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Electrospinning has been the focus of countless studies for the past decades for applications, 

including but not limited to, filtration, tissue engineering, and catalysis. Electrospinning is a one-

step process for producing nano- and/or micro-fibrous materials with diameters ranging typically 

from 50 to 5000 nm. The simulation algorithm presented here is based on a novel mass-spring-

damper (MSD) approach devised to incorporate the mechanical properties of the fibers in 

predicting the formation and morphology of the electrospun fibers as they travel from the needle 

toward the collector, and as they deposit on the substrate. This work is the first to develop a 

physics-based (in contrast to the previously-developed geometry-based) computational model to 

generate 3-D virtual geometries that realistically resemble the microstructure of an electrospun 
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fibrous material with embedded particles, and to report on the filtration performance of the 

resulting composite media.  

In addition, this work presents a detailed analysis on the effects of electrospinning conditions on 

the microstructural properties (i.e. fiber diameter, thickness, and porosity) of polystyrene and 

polycaprolactone fibrous materials. For instance, it was observed that porosity of a PS electrospun 

material increases with increasing the needle-to-collector distance, or reducing the concentration 

of PS solution. The computational tool developed in this work allows one to study the effects of 

electrospinning parameters such as voltage, needle-to-collector distance (NCD), or polymer 

concentration, on thickness and porosity of the resulting fibrous materials. Using our MSD 

formulations, a new approach is also developed to model formation and growth of dust-cakes 

comprised of non-overlapping non-spherical particles, for the first time. This new simulation 

approach can be used to study the morphology of a dust-cake and how it impacts, for instance, the 

filtration efficiency of a dust-loaded filter, among many other applications. 
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Chapter 1. Introduction 

1.1 Background Information 

Electrospinning has been acknowledged as the most versatile and effective technique to fabricate 

fibers and beads with controllable morphologies, structures and functional components. 

Interestingly, it is an easy to setup process and hard to predict known as electrospinning. The 

process of electrospinning produces continuous fibers from the submicron diameter down to the 

nanometer diameter. It has been the focus of countless experimental and computational studies for 

the past decades for applications, including but not limited to, tissue engineering [1,2], filtration 

[3-6], catalysis [7], superhydrophobic surfaces [8-10], drug delivery system [11,12], sensors 

[13,14]. Characterizing the electrospun product is difficult as the materials is thin and compliant 

and its crucially important for product designing and development. Here, we have focused on 

creating 3-D nonwoven structures and predicting the electrospinning process as function of its 

process [15,16]. In the following subsections the background information about electrospinning 

process, bead formation, and mat generation of fibrous materials were presented. 

 

1.2 Electrospinning: General Overview 

Electrospinning is a simple and low-cost method for producing electrospun mats. It is a one-step 

process for producing submicron fibers [15,16]. Electrospun membranes have some important 

properties, including a large specific surface area, light weight, small pore size, and high porosity 

[17]. So, they have great potential applications, such as in air or water filters [18,19], sensors 

[13,14,20], scaffolds [21], separation membranes [22-24], and protective textiles [25]. Diameter 
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of the fibers produced via electrospinning typically range from 50 to 5000 nm (one or two orders 

of magnitude smaller than those of traditional textile fibers [26, 27]). In a typical electrospinning 

process, a liquid jet (a single thread of fiber/filament) is ejected from the surface of a charged 

polymer solution (or melt) and then driven by the electrical forces towards a collector (the high 

voltage differences) [15, 28-31]. The technique is based on the electrostatic force that acts on the 

polymeric solution. The recent work started to study the effect of alternating (AC) electric field on 

static and dynamic properties of other liquids [32]. The charged polymer jet flow travels linearly 

for a short distance before starting bending, which leads to form the increasing instabilities circular 

loop that is called the whipping process [33-36]. However, during the electrospinning process the 

liquid jet shows unstable behavior. This behavior causes the random formation of nanofibers. It 

involves stretching a polymer fluid under a strong electric field into fine filaments, and 

subsequently solidifying them to form dry or semidry fibers, which finally deposit on the electrode 

collector forming a nonwoven fiber mat in the most cases [37]. When the jet flow reaches collector, 

fibers start to deposit on the collector and after while it forms an electrospun mat with a final 

diameter significantly reduced from the initial one [38]. The diameter of the spiral trajectories is 

in the range of a few microns up to a few centimeters. The important reason of the instabilities in 

the filament are the effects of electrostatic repulsions of the charges in the filament and the 

columbic forces caused by the electric field [28-31, 37]. The electric charges in the filament may 

be degenerated in the ambient air due to humidity or air motion or other factors during the 

electrospinning process. However, depending on the polymer structure and the process conditions, 

it is also possible that some charges remain in the fibers after the fibers are deposited on the 

collector. These remain charges neglected in fiber droplet detachment simulations [39,40].   
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Theron et al. 2004 reported the experimental work on the electrospinning process in which the 

influence of different process parameters on the electric current and volume and surface charge 

density in the different solutions of polyethylene oxide (PEO), polyacrylic acid (PAA), polyvinyl 

alcohol (PVA), polyurethane (PU) and polycaprolactone (PCL) jet was measured [41]. Also 

Theron et al. 2005 described the results of the experimental investigation and modeling of multiple 

jets during the electrospinning of polymer solutions [42]. It has been demonstrated experimentally 

and with the help of numerical simulations that the mutual Columbic interactions influence the 

paths of individual electrified jets in electrospinning. 

 

The fiber’s bending instabilities during the electrospinning process produced the straight and curly 

fibers in the resulting electrospun mat. The bending instabilities occurring during electrospinning 

were studied and mathematically modeled by Reneker et al. 2000 by viscoelastic point masses 

connected together. The viscoelasticity of the spinning polymer and solvent evaporation effects on 

jet flow movement were discussed in the Maxwell model [33, 34]. The most common linear 

viscoelastic models are the Maxwell model, in which springs and dampers are connected in series 

(the springs and dampers resemble the material's elasticity and viscosity), which is more suited for 

a fiber in the liquid/melt state. This model considers the total forces are taken into on each bead 

consists of a viscoelastic force, an electric force, a Coulomb force and a surface tension force. As 

well as this, the effect of evaporation during spinning is considered. Although, it may not 

accurately design and control the electrospinning process because of difficulty in measuring model 

variables.  
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Based on the model originally introduced by Reneker and Yarin [33], Lauricella et al. developed 

JETSPIN code to simulate the electrospinning process of nanofibers with delivering a discrete 

element model [43]. Dynamic mesh refinement was applied to address the low resolution problems 

in discrete elements methods [44]. The air drag force added to Newton’s equation to study its effect 

on bending instabilities of jet path [45]. Effects of particles and external rotating electric field on 

the whipping instabilities studied to have a better control on the morphology of the resulting 

electrospun fiber [46, 47]. In their work, the reason of reduction in jet flow radius is stretching 

process, they have a consequent decrease of the filament radius as a result of the volume 

conservation.  They didn’t consider the effect of evaporation and mass reduction on charge, 

elasticity and diameter of jet flow as presented in [34, 48]. Borzacchiello et al. 2016 described the 

fluid rheology using Giesekus model to predict the polymer properties accurately [49]. Simko et 

al. 2016 developed the mathematical model to describe the electrospinning process of 

poly(ethylene oxide) PEO and predict the deposition direction of electrospun nanofibers as a 

function of flow rate, viscosity, relaxation time and electrical potential [50]. Gadkari 2018 

considered the jet as a charged continuum to study the polymer relaxation time to obtain bead free 

uniform fibers [51]. In this model, the jet travels in a straight line from the needle tip to the collector 

plate and this work can’t predict whipping. Pontrelli et al. 2014 develop an analytical bead-spring 

model to investigate the role of non-linear rheology on the dynamics of electrified jets in the early 

stage of the electrospinning process [52]. The elongation of the charged jet filament is significantly 

reduced in the presence of a non-zero yield stress. Lauricella et al. 2015 investigated the effects of 

dissipative air drag on the dynamics of electrified jets in the initial stage of the electrospinning 

process [53]. The main idea is to use a Brownian noise to model air drag effects on the uniaxial 

elongation of the jets.  
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The described mathematical model in [33,34] of electrospinning process helps to predict the 

deposition direction of electrospun nanofibers as a function of flow rate, viscosity, relaxation time 

and electrical potential. Thompson et al. 2007 determined the effects of 13 material and operating 

parameters on electrospun fiber diameters by varying the parameter values in an electrospinning 

theoretical model [48]. The important parameters in the morphology of electrospun polymer fibers 

are concentration, applied voltage, and solvent properties. Higher concentrations of the polymer 

solution form thicker fibers and fewer beads. The fiber morphology under different solvent mixture 

ratios and solvent mixtures has also been studied [54]. Therefore, the current work is devised to 

obtain the jet flow properties like deposition velocity and fiber diameter at the moment it touches 

collector in the consideration of solvent evaporation. In our work, we presented instabilities of jet 

flow to simulate the realistic jet flow and the jet flow properties to use in mat generation code. 

 

1.3 Bead Formation  

The fabricated mats have been widely applied in various applications, including in tissue 

engineering and filtration industry [3, 55-62]. Mats that are fabricated by electrospinning have 

various morphologies that include pure fibers and beaded fibers [63,64]. Changing the morphology 

from pure fiber to beaded fibers has involved altering and controlling the polymer concentration 

in the precursor solution, which does affect the produced electrospun mat [38, 63-65]. The 

viscoelasticity of the solution, charge density carried by the jet, and the surface tension of the 

solution are the key factors that influence the formation of the beaded fibers. Several theoretical 

models have been used to explain the formation of beads on a string structure in viscoelastic 

filaments [66, 67]. 
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Electrospun mats often have beads in regular arrangements [68, 69]. Specifications of electrospun 

fibers, such as morphology and size can be controlled by electrospinning condition including 

polymer concentration, applied voltage, polymer flow rate, and needle tip-to-collector distance 

[70, 71]. A number of publications have been reported on the effect of electrospinning conditions 

on the resulting fiber morphology. However, comprehensive studies on the development of various 

morphologies of electrospun mat and introducing different conditions have rarely been reported. 

Interestingly, apart from fibers with a broad range of diameters and made of different polymeric 

materials, the electrospinning method allows one also, for specific experimental conditions, to 

obtain other polymer structures like the beaded (microsphere on mat) morphology [68, 69, 72-74]. 

It is well known that polymer concentration is one of the most important parameters in the 

fabrication   and   morphology   of nanofibers in electrospinning process. When the polymer 

concentration is low, many microspheres appeared in electrospun products, and the process 

became electrospraying. 

 

The morphology of electrospun polymer ranges from particles (electrospray [75-77]) to pure fibers 

(electrospinning), depending on various conditions. Electrospinning and electrospraying processes 

were tested as tools for the production of nonwoven nanocomposite fabric from a polymer material 

with nanoparticles deposited on a fiber surface or collector [78,79]. 

 

1.4 Mat Generation: General Overview 

To date, there is no accurate method for measuring the thickness, and consequently the porosity of 

a nanofiber mat (see e.g., [80]). Characterizing the morphological structure of the electrospun mat 
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accurately is important, when such layers are applied to filters, barrier fabrics, and fluid absorbent 

media as well as many others [1-14]. Obviously, one cannot know the performance of a nanofiber 

mat without knowing its properties such as thickness and porosity. The morphological structure 

models have been widely applied to simulate the application process, such as in the prediction of 

the specific permeability [81], filtration efficiency [82], and thermal conductivity [83]. Simulations 

of electrospun mat in the application process have focused on filtration [84,85]. Most of 

electrospun models focus on the electrospinning processes, such as the distribution of charges in 

liquid-jet models [86], the stability of the jet model [33,34], and the multiple-jet model [35,42]. 

However, little literature is available on the modeling of the morphological structure of electrospun 

mats. Samaha et al. [87] developed a novel experimental method to estimate the thickness and gas 

volume fraction of superhydrophobic coatings that known as buoyancy method. The buoyancy 

method is a new technique that allows one to estimate the thickness of a non-wetting porous 

material by submerging it. However, for mats that are not superhydrophobic, one has to find 

another way or to use another fluid instead of water. Zundel et al. 2017 presented a discrete random 

network modelling approach specific to electrospun networks [88]. Feng et al. 2017 proposed a 

model for the morphological structure of electrospun membranes, it was different from the random 

distribution of fibers in a nonwoven [89]. The 3-D structure of nonwovens produced with number 

of layers, and each layer is made up of a network of random fibers. The model can be divided into 

two categories: two-dimensional (2-D) simulation and three-dimensional (3-D) simulation. For 2-

D simulation, Monte Carlo simulation is a widely used method [90,91], and the fiber orientation 

follows free path randomness (m randomness), which is suitable for generating a nonwoven with 

continuous fibers [92,93]. 3-D simulations are often based on 2-D simulations. In a recent study 

by Choong et al. 2015 [94] used a laser scanning microscopy with fluorescent markers to collect 
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3-D digitized images of electrospun fiber mars, and they reconstructed a 3-D structure of an 

electrospun mat. In these models, only partial areas of the mat where the fibers could be viewed in 

a random distribution were observed, but the distribution of the fibers in the whole mat was not 

researched. Recently our group has developed a viscoelasticity model (mass-spring-damper 

model) to simulate 3-D structure of electrospun material and thereby predict their thickness 

[95,96]. In this model, fibers implemented as arrays of beads connected with springs and dampers, 

and is therefore capable of realistically simulate curvature of the fibers at fiber–fiber crossovers 

without allowing the fibers to penetrate into one another–a major advantage over the previous 

fiber-mat generation methods [97-104]. Also this mass-spring-damper simulation could be used in 

fiber-droplet detachment simulation [105, 106] as a most realistic simulation of fiber to validate 

the detachment experiment results [107,108].  

 

The proposed mass-spring-damper (MSD) method has the capability to simulate 3-D structure of 

the pure fibers (electrospinning) to spherical (electrospraying) and non-spherical particles (dust 

packing [109,110]), depending on various conditions. Therefore, an additional level of structural 

complexity can be introduced into the structure by the production of small pure monodisperse 

particles when a colloidal suspension of solid nanoparticles or a solution of a material is sprayed 

[111,112]. The produced structure is porous, with the nanoparticles deposited on them increasing 

the total surface area when the microsphere is deposited [79]. Simultaneous electrospinning and 

electrospraying (SEE) may be used to incorporate functional nanoparticles on the surface of the 

nanofibers within the membrane. SEE method leads to self-dispersion of nanoparticles in nanofiber 

membrane and the nanoparticles can attach to the surface of nanofibers [78,79].  
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1.5 Overall Objectives of This Thesis 

Main objective of this dissertation is to develop a computational model to characterize the fibrous 

structure resulted from electrospinning. The main contribution of this work is to understand the 

mechanical properties of filter media and electrospun mat that can be obtained through 

electrospinning process. Computational models are developed to predict the mechanical properties 

of 3-D porous structure as a function of production parameters and several experiments are 

performed to validate computational results. Another objective is to study the dust formation of 

non-spherical particles for first time. 

 

First, the electrospinning process for different polymer is investigated to predict the jet flow 

movement and changes. Most of the previous studies on electrospinning process were focused on 

predicting the trajectory of the electrospinning jet flow. Less attention was paid to the effect of 

electrospinning condition and polymer properties on the deposited fiber’s properties (like fiber 

diameter and deposition velocity). An experimental study helps us to validate or simulations better 

understanding of electrospinnig and produced electrospun mat to characterize. This information is 

crucially important for simulate the fibrous structure. The ultimate goal of the present work is to 

develop a computer program for predicting the electrospinning process and its filter media used in 

fluid-air or fluid-fluid separation, filtration. 

 

Despite the widespread applications of electrospun fibers, accurate thickness measurement of an 

electrospun fiber mat is still difficult as the materials is thin and compliant. Chapter 2 discusses a 

modeling approach to help better understand this problem. This work presents an algorithm that 

includes straight fibers in morphology simulation is developed for the first time, to create virtual 
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3-D fibrous structures that resemble the micro-geometry of an electrospun fiber mat (see Chapter 

2). The algorithm is based on treating a fiber as an array of beads interconnected with springs and 

dampers, and is particularly designed to simulate the bending of the fibers at fiber-fiber crossovers 

(important for predicting the thickness and porosity of a nanofiber mat). An in-house C++ 

computer program is developed for this algorithm and is used to study the effects of fiber 

mechanical properties on the thickness and porosity of electrospun mats. An additional Python 

computer program is developed to simulate fiber formation in electrospinning, and more 

importantly, obtain the deposited fiber properties as an input of mat generation C++ code. It also 

worth mentioning that two different experimental methods have been considered to calibrate our 

simulation results in our thickness measurements for polystyrene mats (hydrophobic mats), the 

buoyancy method and micrometer measurements.  The uniqueness of this work lies on its ability 

to obtain relationships between the thickness (and porosity) of electrospun mat and the properties 

of its constituting fibers and its electrospinning process. The electrospun mat properties were 

shown to depend on deposited fiber, which varies depending on polymer properties and 

electrospinning conditions. 

 

Chapter 3 presents a detailed investigation on the 3-D structure of electrospun mat that are made 

of curly fibers and the mechanical properties of simulated mat as a function of electrospinning 

process. These effects are predicted computationally via numerical simulation and validated with 

electrospinning experiments. Special attention is paid to formation of curly fibers in 

polycaprolactone (PCL) electrospinning and its fiber fiber-fiber bending and deflection which the 

viscoelastic properties of fibers were obtained based on experimental data reported literature for 

the single-fiber properties. This work also discusses the effects of electrospinning variables on the 



www.manaraa.com11 
 

size and velocity of the deposited fibers of PCL and its effects on the mechanical properties of 

fibrous nonwoven structure like thickness and porosity and presents a mathematical expression to 

predict the fate of that polymer. 

 

The fibrous structure in the presents of spacer particle is discussed in Chapter 4. 3-D structure of 

fibrous structure comprised of number of fibers and particles are studied in terms of their portion 

and size to characterize the simulated structure and its filtration efficiency. The effects of 

microparticles properties on the simulated structure are investigated via numerical simulation. 

More specifically, the work presented here is the first to report the effects of spacer particles with 

different diameters or basis weights on the thickness and solid volume fraction of spacer-embedded 

fibrous media. Our numerical simulations conducted using our in house C++ computer program. 

Interestingly, our results indicate that adding spacer particles to a fibrous filter can lower its 

collection efficiency and pressure drop, but the reduction in the pressure drop will be at a higher 

rate resulting in better filters, i.e., filters with better quality factors. 

 

The idea of simulating the dust growth comprised of non-spherical particles is presented in Chapter 

5.  A computational simulation of different shape presented to effectively characterize the 

morphology of dust growth for different properties and shape. More specifically, this study 

proposed a new approach for mass-spring-damper method (MSD) to model 3-D non-spherical 

particles. Different shapes with 3 different aspect ratio are modelled to investigate the effects of 

particle shape, size and packing on porosity and thickness of packed dust. This was accomplished 

by using the developed our C++ computer program. The simulation results prove this point that 

the symmetric particles (like sphere, cube and short fibers) with the small size and aspect ratio 
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have the highest solid volume fraction (packing density) for a constant basis weight in comparison 

with other non-spherical long leg particle. Finally, the overall conclusions of this thesis are 

presented in chapter 6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



www.manaraa.com13 
 

 

Chapter 2. Effects of Electrospinning Conditions on Microstructural Properties of 

Polystyrene Fibrous Materials 

 

2.1 Introduction 

Electrospinning is a popular method for producing fine fibers ranging from about 0.05 µm to about 

10 µm in diameter, and it has been the focus of countless studies for the past decades for 

applications, including but not limited to, tissue engineering [1,2], filtration [3-6], catalysis [7], 

self-cleaning [112-114], drug delivery [12,13], and sensor manufacturing [14,15]. While it is quite 

easy to setup an electrospinning unit, it is very difficult to predict the outcomes of an 

electrospinning experiment in terms of fiber diameter, mat thickness, or mat porosity. This is due 

mainly to the complicated physics of fiber formation in electrospinning, and also the minuteness 

of the resulting fibers [38,39,80,115,116]. For instance, there is no accurate method of measuring 

the thickness, and consequently the porosity, of an electrospun fiber mat. This is because such 

mats are generally very thin, and at the same time, very soft (tend to deform during measurement) 

(see e.g., [80,116]). Regarding this concern, our group has recently developed a mass-spring-

damper (MSD) model to simulate the morphology of electrospun materials and thereby predict 

their thickness and porosity [95]. This model treats the fibers as arrays of beads connected to one 

another with springs and dampers, and is therefore capable of realistically modeling the 

mechanical interactions between the fibers during mat formation. More importantly, our MSD 

model can realistically simulate curvature of the fibers at fiber–fiber crossovers without allowing 

the fibers to penetrate into one another––a major advantage over the previous fiber-mat generation 

methods [88,89,97-104,117-122]. Obviously, for the fiber-to-fiber interactions to be accurate, the 
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MSD model requires material-dependent values for the stiffness of the springs and dampers that 

are used to simulate the rigidity of the fibers. Such fiber-level information is not always available, 

and therefore as will be discussed later in this chapter, we calibrated our MSD model using 

experimental data obtained from electrospinning polystyrene (PS) mats. In addition, our MSD mat 

generation algorithm requires fiber diameter and fiber deposition velocity as inputs. These factors 

are both process- and polymer-dependent parameters, i.e., they vary with electrospinning 

parameters such as voltage, needle-to-collector distance (NCD), and solution concentration among 

many others. To overcome this limitation and improve the usability of the MSD model as a design 

or characterization tool for electrospinning, we have coupled the electrospinning filament 

formation model of Refs. 33 and 34 with our MSD model in the current study. The pioneering 

mathematical formulations developed Refs. 33 and 34 allows one to simulate the formation of a 

filament in an electrospinning process starting from the needle all the way to the collector. This 

allows us to obtain the necessary input values for the MSD mat generation model, and thereby 

relate the properties of an electrospun mat to the electrospinning conditions, for the first time.  

 

The remainder of this chapter is organized as follows. Section 2.2 presents a brief overview of our 

experimental setup for producing electrospun PS mats. A condensed summary of the 

electrospinning model of Refs. 33 and 34 is then given in Section 2.3 followed by our mat 

generation model in Section 2.4. The computational and experimental results obtained for 

electrospinning PS are presented and discussed in Section 2.5. Conclusions drawn from our study 

are given in Section 2.6. 
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2.2 Experiment 

PS pellets (average molecular weight 350,000 purchased from Aldrich, MO) were dissolved in a 

THF (HPLC grade) or Toluene (ACS grade) mixture with Acetone (ACS grade) with a 70 to 30 

weight fraction (solvents were purchased from Fisher Scientific, Fair Lawn, NJ). Solutions were 

stirred at room temperature overnight until they were macroscopically homogeneous and then 

stored at 4°C. The PS concentration was typically between 21 and 30 percent by weight. The PS 

solution was electrospun using a conventional set-up (see Figure 2.1). Briefly, PS solution was 

pumped (New Era Pump System, Inc., Farmingdale, NY) through a 22-gauge (inner diameter = 

0.508 mm) stainless steel needle (Jensen Global, Santa Barbra, CA) at a constant rate while 

applying a constant voltage (Matsusada High Precision Inc., Shiga, Japan). The mats were 

produced with a NCD of about 10 cm, with an applied voltage of 11 kV, and with a solution flow 

rate of 0.5 mL/hr.   

 

Figure 2.1: Electrospinning setup. 

 

In order to measure the fiber diameter, small sections of about 5mm ×  5mm were cut from the 

central portions of the deposited non-woven structure on the substrate for the SEM analysis. Figure 

2.2 presents the SEM images of 30 wt% Polystyrene mats from the top view (left) and side view 
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(right). It can be seen that the fibers were almost straight having circular cross section with a small 

bending between fiber-fiber cross overs. Average diameter of the fibers was obtained through 

imaging the resulting mats using a scanning electron microscope (averaged over more than 50 

fibers per image) as shown in Figure 2.2. Inset shows the percentage distribution of fiber diameter 

for the sample presented in Figure 2.2. 

 

 

Figure 2.2: Selected scanning electron micrographs of a) A Polystyrene mat obtained by 30 min 

electrospinning (30wt%, 11kV, 10cm distance, 0.4ml/hr). b) The side view of Polystyrene mat. 

Fiber diameter distribution of electrospun Polystyrene for 22wt% PS/THF.  

 

2.2.1 Thickness Measurement Using a Micrometer and via Buoyancy Method 

In order to estimate the thickness of the mats, 75𝑚𝑚 × 25𝑚𝑚 samples were cut from the central 

region of the mats and used for thickness measurement. The thickness can be measured using two 

different techniques, micrometer and buoyancy method. The sample mats, on the aluminum foil, 

were then sandwiched between two glass slides, and the overall thickness of the entire setup was 

measured by averaging the local thicknesses obtained in different locations using an accurate 

micrometer from Mitutoyo. The mat thickness was then obtained by subtracting the thickness of 

the known (or easy-to-measure) parts from the assembly. We also measured the thickness of the 

mats using an in-house buoyancy technique that takes advantage of the hydrophobicity of the PS 
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mats (see Figure 2.3) [87]. In this method, the difference between the weights of a submerged glass 

slide with and without the PS mat 𝛥𝑓𝑏 (i.e., the weight of the water displaced by the air entrapped 

inside the submerged mat) was used to estimate the thickness of the mat using the following simple 

equation.  

𝑡 =
1

𝑎𝑠
(
∆𝑓𝑏

𝜌𝑤𝑔
)           (2.1) 

In this equation, 𝑎𝑠 is mat’s surface area, 𝜌𝑤 is density of DI water used in the experiment, and 𝑔 

is the gravitational acceleration. 

 

Figure 2.3: Setup used to estimate effective thickness and gas volume fraction of 

superhydrophobic coatings: photograph of actual setup, the image in the box presents a layer of 

air that is entrapped in the submerged portion of the Polystyrene mat.  

25 mm

Height gauge

PS mat  
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2.3 Numerical Simulation 

Our steps in simulating electrospun PS mats are as follows. Adopting the model of Refs. 33 and 

34, we first simulate the formation of a single filament as it exits the needle and flies in air to reach 

the collector (Section 2.3.1). We then use the calculated filament diameter and filament deposition 

velocity to generate 3-D virtual fibrous structures that resemble the morphology of electrospun PS 

mats (Section 2.3.2). The resulting combined simulation approach allows one to study how 

electrospinning parameters (e.g., voltage) affects mats properties (e.g., porosity).  

 

2.3.1 Simulation of Filament Electrospinning 

The electrospinning model considered in this section was developed in Refs. 33 and 34 and also 

used in many subsequent investigations [43,47,50]. Using the Maxwell viscoelastic model in this 

work, the polymer jet (i.e., filament) is treated as an array of beads with a mass of 𝑚𝑖 separated by 

a distance 𝑙𝑖 = |𝑟𝑖 − 𝑟𝑖−1| interconnected by springs and dampers (viscoelastic elements) in a 

series (Figure 2.4). Neglecting the gravitational force, the viscoelastic forces acting on bead 𝑖 by 

its neighbors (bead 𝑖 − 1 and bead 𝑖 + 1) are given as  

𝑓𝑖
𝑣𝑒⃗⃗ ⃗⃗ ⃗⃗ ⃗ =

𝜋𝑑𝑖+1
2 𝜎𝑖+1

4𝑙𝑖+1
(𝑟𝑖+1 − 𝑟𝑖) −

𝜋𝑑𝑖
2𝜎𝑖

4𝑙𝑖
(𝑟𝑖 − 𝑟𝑖−1)      (2.2) 

where 𝑑𝑖 is the filament diameter at the location of bead 𝑖, defined by 𝑟𝑖 = (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖). Sigma is the 

normal stress acting on the filament cross-section at the location of bead 𝑖, with its rate of change 

with time given as  

𝑑𝜎𝑖

𝑑𝑡
=
𝐺

𝑙𝑖

𝑑𝑙𝑖

𝑑𝑡
− 𝜃𝜎𝑖          (2.3) 
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where G is the elastic modulus and 𝜃 =
𝜇

𝐺
 is the relaxation time of the polymer jet.  

 

Figure 2.4: Diagram of the electrospinning model. The three dimensional discrete mass-spring-

damper model representation of a jet flow of [33,34] We represent the Maxwell viscoelastic force, 

f ve, the surface tension force, f st, pointing the center of curvature to restore the rectilinear shape, 

and the Coulomb repulsive term, f c, which is the sum over all the repulsive interactions between 

the beads. The external electric potential, V0, is indicated by the big arrow in figure, while the 

upper cone represents the nozzle.  
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The other force acting on bead 𝑖 is the surface tension force 𝑓𝑖
𝑠𝑡⃗⃗ ⃗⃗ ⃗⃗  which provides resistance against 

bending of jet’s centerline as it travels toward the collector, 

𝑓𝑖
𝑠𝑡⃗⃗ ⃗⃗ ⃗⃗ = 𝛼𝑘𝑖𝜋 (

𝑑𝑖+𝑑𝑖−1

4
)
2 (𝑥𝑖⃗⃗ ⃗⃗ +𝑦𝑖⃗⃗ ⃗⃗ )

(𝑥𝑖
2+𝑦𝑖

2)
1 2⁄         (2.4) 

where 𝛼 is the surface tension of the polymer, 𝑘𝑖 is the curvature of the jet in the x–y plane, and 

𝑥𝑖 and 𝑦𝑖 are the x and y coordinates of bead 𝑖. The polymer jet stretches as it travels from the 

needle to the collector due to an external potential 𝑉0 leading to an electric attraction force 

𝑓𝑖
𝑒𝑙⃗⃗ ⃗⃗ ⃗⃗ acting on the beads as  

𝑓𝑖
𝑒𝑙⃗⃗ ⃗⃗ ⃗⃗ = −𝑒𝑖

𝑉𝑜

𝐻
𝑘           (2.5) 

where 𝐻 is the NCD, 𝑒𝑖 is the charge on bead 𝑖, and 𝑘 is the unit vector in the z-direction. The 

Columbic force acting on bead 𝑖 by other charged beads in the jet 𝑓𝑖
𝐶⃗⃗ ⃗⃗ ⃗ is given by  

𝑓𝑖
𝐶⃗⃗ ⃗⃗ ⃗ = ∑

𝑒𝑖
2

𝑅𝑖𝑗
3

𝑛
𝑗=1
𝑗≠𝑖

(𝑟𝑖 − 𝑟𝑗)         (2.6) 

where 𝑅𝑖𝑗 is the distance between bead 𝑖 and any other bead 𝑗 in the jet.  

 

Applying Newton’s second law to each bead in the polymer jet, one obtains a system of coupled 

ordinary differential equations, i.e.,   

𝑑

𝑑𝑡
[
𝑣𝑖
𝑟𝑖
] = [𝑓𝑖

∑
/𝑚𝑖
𝑣𝑖

]           (2.7) 

where 𝑓𝑖
∑
= 𝑓𝑖

𝑣𝑒⃗⃗ ⃗⃗ ⃗⃗ ⃗ + 𝑓𝑖
𝑠𝑡⃗⃗ ⃗⃗ ⃗⃗ + 𝑓𝑖

𝑒𝑙⃗⃗ ⃗⃗ ⃗⃗ + 𝑓𝑖
𝐶⃗⃗ ⃗⃗ ⃗ and 𝑟𝑖 is the position vector of bead 𝑖. 𝑚𝑖 represents the mass 

of bead i which decreases along the jet as the of solvent evaporates. Solving Equation 2.7 
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numerically results in the instantaneous position and velocity of the beads constituting the filament 

during their travel from the needle to the collector. 

 

Following the work of Refs. 33 and 34, we calculate the rate of solvent evaporation from the 

filament using a Sherwood number correlation that relates the convective mass transfer coefficient 

ℎ𝑚 to Reynolds 𝑅𝑒 =
𝜌𝑠𝑉𝑖𝑙𝑖

𝜂𝑎
 and Schmidt 𝑆𝑐 =

𝜂𝑎

𝜌𝑠𝐷𝑎
 numbers written for the traveling filament 

(treated as a cylinder moving in air in a direction parallel to its axis) [34],   

𝑆ℎ =
ℎ𝑚𝑑𝑖

𝐷𝑎
= 0.495𝑅𝑒

1

3𝑆𝑐
1

2          (2.8) 

where 𝐷𝑎 is diffusion coefficient for solvent vapor in air.  

Obtaining ℎ𝑚 from Equation 2.8, the rate of change of solution mass due to evaporation can be 

calculated as, 

𝜕𝑚𝑖

𝜕𝑡
= −𝜋𝜌𝑠ℎ𝑚[𝑐𝑒,𝑒𝑞 − 𝑐𝑠∞]𝑑𝑖𝑙𝑖        (2.9) 

where 𝜌𝑠 is the density of the polymer solution, 𝑑𝑖 is the jet diameter,𝑙𝑖 is the distances between 

bead i and bead i+1 (the length of the filament segment), 𝑐𝑠,𝑒𝑞 is solvent vapor concentration at 

saturation (ambient temperature), and 𝑐𝑠,∞ is solvent vapor concentration in far field. Combining 

Equations 2.8 and 2.9, one can predict the rate of change of jet volume due to evaporation, i.e.,  

𝜕𝑉𝑖

𝜕𝑡
= −0.495𝜋𝐷𝑎𝑅𝑒

1

3𝑆𝑐
1

2[𝑐𝑒,𝑒𝑞 − 𝑐𝑠∞]𝑙𝑖        (2.10) 
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where 𝑉𝑖 is the filament segment volume which is a function of the area of jet multiplied by the 

segment length 𝑙𝑖.  Solving the 1st order ordinary differential equation given in Equation 2.10, one 

can obtain the diameter of the filament as it travels from the needle toward the collector over time. 

 

As mentioned earlier in Section 2.2, the fibers are made from a solution of PS (1060 kg/m3) in a 

mixture of Toluene and Acetone (7:3 w/w). The polymer-specific input parameters used in the 

filament formation simulations are given in Table 2.1, and they include mass, charge density, and 

relaxation time θ. The relaxation time for a typical PS solution is reported to be in the range of 8 

to 11 ms [123]. Here, we assumed a relaxation time of θ =10 ms to be consistent with that used in 

the work of Refs. 33 and 34. 

Table 2.1: Input parameters for PS jet flow simulations. 

a0 

(cm) 

e 

(g1/2cm3/2/s) 

α 

(kg/s2) 

m 

(kg) 

V0 

(kV) 

q 

(mL/h) 

G 

(g/cm s2) 

H 

(cm) 

15×10-3 8.48 0.7 0.283×10-8 11 0.5 3×109 10 

 

The filament simulation starts with two beads with their initial conditions considered as input. The 

instantaneous position and velocity of these beads are then calculated by solving Equation 2.7 via 

an in-house Python code. In each time step, the algorithm checks for the distance between the last 

bead and the needle. If the last bead has travelled more than 0.0005𝐻  (0.05% of the NCD), the 

algorithm then adds a new bead at a distance of 0.00025𝐻 from the needle.  The code also checks 

the z-coordinate of the first bead at every time step to stop the simulation when it reaches the 

collector. 
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2.3.2 Simulation of Filament Electrospun Mats 

In generating an electrospun mat, we assume the mat to be made of hundreds (or thousands) of 

individual fibers deposited horizontally on top of one another. Note that we only simulate a small 

portion (less than 1 mm by 1 mm) of an actually large (about 150 mm by 150 mm) mat due to 

computational limitations. In addition, we consider the fibers to be solid (unlike the polymer jet of 

Section 2.3.1). The fibers are again treated as arrays of beads interconnected by springs and 

dampers but in parallel arrangement (the Kelvin–Voigt model suitable for solid fibers) as shown 

in Figure 2.5 [95]. From a free body diagram showing the force acting on bead 𝑖 by the beads to 

which it is connected, one obtains (Figure 2.5), 

𝑓𝑖
∑
= 𝑓𝑖,𝑖−2

𝑠 + 𝑓𝑖,𝑖−1
𝑠 + 𝑓𝑖,𝑖+1

𝑠 + 𝑓𝑖,𝑖+2
𝑠 + 𝑓𝑖,𝑖−2

𝑑 + 𝑓𝑖,𝑖−1
𝑑 + 𝑓𝑖,𝑖+1

𝑑 + 𝑓𝑖,𝑖+2
𝑑 + 𝑓𝑖

𝐶   (2.11) 

In this equation, 𝑓𝑠  and 𝑓𝑑 represent spring and damper forces, respectively, i.e.,   

𝑓𝑖,𝑖+1
𝑠 = −𝑘𝑠(‖𝑝⃗𝑖 − 𝑝⃗𝑖+1‖ − 𝑙𝑟)

(𝑝⃗𝑖−𝑝⃗𝑖+1)

‖𝑝⃗𝑖−𝑝⃗𝑖+1‖
       (2.12) 

𝑓𝑖,𝑖+1
𝑑 = −𝑘𝑑(𝑢⃗⃗𝑖 − 𝑢⃗⃗𝑖+1)         (2.13) 

The last term on the right-hand side of Equation 2.11 is the electrostatic force applied on each bead 

by the field, and it can be described using Equation 2.6. The dynamics of fibers depositing on top 

of one another (and bending at the fiber–fiber crossovers) can be simulated through solving a 

system of coupled differential equations similar to the one given in Equation 2.7. 



www.manaraa.com24 
 

 

Figure 2.5: Schematic representation of a fiber comprised of point masses, springs, and dampers 

(our MSD model [95]) and the free body diagram showing the forces acting on a bead. 

 

Accurate simulation of the bending fibers at fiber-fiber crossovers is an important yet challenging 

task that can directly affect the thickness and porosity of a fibrous mat. The extent of bending that 

occurs at the fiber crossovers depends strongly on the viscoelastic properties of the fibers as well 

as the electrostatic and aerodynamic fields during fiber deposition and solidification processes. In 

the absence of detailed quantitative information with regards to these factors, it is practically 

impossible to predict the morphology of an electrospun fiber mat. As such, the simulation 

algorithm developed in the current work is aimed to only shed some light on this complicated 

problem by studying the viscoelasticity properties from experiments.  
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2.3.3 Combined Algorithms 

In this section, we present a procedure to simulate the formation of electrospun fiber-mats starting 

from the needle. The aforementioned equations from Section 2.3.1 are programed in a Python code 

to simulate the formation of filaments during electrospinning. The simulation starts by introducing 

two beads with the initial conditions needed to create the first filament segment (segments are 

represented with imaginary beads having a constant diameter equal to that of the local diameter of 

the filament). Beads enter the simulation domain vertically from the needle with given initial 

properties (zero initial radial velocity and stress, but an initial perturbation to the x and y positions 

of the beads). The next step in filament formation modeling is to calculate the rate of solvent 

evaporation which can directly affect filament diameter, and then to update the charge and 

viscoelastic properties of the filament. The distance between two beads, which presents the 

stretching of filaments, depends strongly on the material of the polymers as well as the electrostatic 

and aerodynamic fields during spinning and vaporization. During filament formation, diameter of 

the jet becomes smaller due to stretching. Moreover, conservation of charges in the jet elements 

helps to obtain the charges on the beads. 
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Figure 2.6: Our combined filament formation and mat generation algorithms. 

 

Detailed quantitative information with regards to these factors is necessary to predict the trajectory 

of the filament in air. The conservation of momentum was written for each bead, which resulted 

in a system of coupled ordinary differential equations (Equation 2.7) to be solved using a Runge–

Kutta 4th order (RK-4) method with a time step of 0.05 μs. This results in the position and velocity 

of the beads as function of time during the integration time (see Figure 2.6). In each time step, the 

algorithm checks whether or not a collision has occurred between the beads and if the first bead 

has reached the collector at 𝑧 = 0 (criterion to stop the simulation). The velocity and diameter of 

the first bead are taken as the deposition velocity and fiber diameter in the mat generation 

algorithm. In the mat generation simulation, fibers enter the simulation domain horizontally and 

with an initial vertical velocity (deposition velocity). Once deposited (and deformed), the fibers 

are assumed to be rigid. Fiber interpenetration is avoided by checking the distance between the 
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beads at each time step to make sure that no beads can come closer to one another by a distance 

less than a fiber diameter (see the magnified image in Figure 2.6). Our collision detection algorithm 

searches for a collision between the beads of a new fiber and those of the deposited fibers. A 

similar procedure, as explained earlier in this subsection, is repeated to deposit a certain number 

of fibers (determined based on the desired weight per square meter) [95]. The thickness of the 

virtual mats is estimated by averaging the z-coordinates of a few representative beads near the top 

surface. The length of the fibers in the mat is obtained by calculating the distance between adjacent 

beads along the length of each fiber. The solid volume fraction of the mat is then obtained knowing 

the total number of deposited fibers (and their volumes) and the macroscopic dimensions (i.e., 

volume) of the mat.  

 

2.4 Results and Discussion 

We start by presenting an example of our filament trajectory predictions obtained for a PS filament 

spun under an electrostatic field of 𝑉0 = 11 𝑘𝑉 across a NCD of 𝐻 = 10 𝑐𝑚. As can be seen in 

Figure 2.7, the filament follows a spiral trajectory as it travels from the needle toward the collector. 

Note that the diameter of the spiral trajectory on the collector is about 6 to 7 cm, and this explains 

why the fibers appear to be relatively straight in the 700 µm × 500 µm SEM images taken from 

the actual mats (e.g., Figure 2.2). This also serves as a justification for considering straight fibers 

in simulating electrospun mats in this chapter.  
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Figure 2.7: An example of filament trajectory simulations in 3-D is given in 3 different times 

(1ms, 2ms, and ~5ms).    

 

Figure 2.8a shows the effects of PS concertation on filament final diameter (i.e., fiber diameter in 

the mat) obtained from the simulations. These results are also compared with their experimental 

counterparts measured from SEM images. We believe that the agreement between the 

experimental and computational results is reasonably good, given the complexity of the 

electrospinning process and the simplifying assumptions considered in developing the model. This 

figure shows that fiber diameter increases from about 2 µm to about 6 µm with increasing polymer 

concentration from 20% to 30% (due perhaps to the increase of the solution viscosity working 

against filament stretching). The results shown in Figure 2.8a are in qualitative agreement with the 

experimental observations reported in Refs. [48,124-126]. Figure 2.8b shows filament diameter 

versus NCD. It can be seen that filament diameter decreases from about 110 µm near the needle 

down to about 4 µm near the collector due to solvent evaporation and mechanical stretching. Input 

parameters used for this simulation are given in the figure. The results shown in Figure 2.8b are in 

(c)(a) (b)



www.manaraa.com29 
 

qualitative agreement with the work of Ref. 48 who also used the electrospinning model of Refs. 

33 and 34 to study the effects of polymer properties and electrospinning conditions on filament 

diameter. The filament diameter decreases rapidly over a distance of less than a centimeter flow 

the needle. This is because the jet is more fluid (more stretchable) near the needle but it becomes 

more viscous later during its flight toward the collector due to solvent evaporation [48].  

Figure 2.8: Average fiber diameter is shown versus PS concentration in (a) for electrospun mats 

produced at a flow rate of 0.5 ml/h with a voltage of 11 kV with a NCD of 10 cm. Predictions from 

our numerical simulations are added to this figure for comparison. Jet local diameter (beads 

diameter) is given in (b). See Table 2.1 for simulation parameters. 

 

Figure 2.9 shows the axial (in the z-direction) and the radial velocity of the beads along the length 

of the filament. It can be seen that axial velocity is almost constant while the radial velocity 

monotonically increases with distance (filament velocity is a function of electric field, NCD, and 

polymer properties) [33]. The resultant bead velocity at the moment of contact with collector is 

marked with a red circle in Figure 2.9, and it is about 20 m/s for the case simulated. This velocity 

is used in our mat generation code as the filament deposition velocity.  
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Figure 2.9: Predictions from our numerical simulations for jet local velocity (beads velocity) for 

a Polystyrene parameters shown in Table 2.1.  

 

As mentioned earlier in the Introduction, for the fiber-to-fiber interactions to be accurate, the MSD 

model needs to be calibrated using material-dependent values for the stiffness of the springs and 

dampers used in modeling each individual fiber. In the absence of such fiber-level information, we 

calibrated our MSD model using thickness data obtained from electrospinning PS mats. To obtain 

a relationship between fiber diameter and mat thickness experimentally, a series of electrospun PS 

mats was produced under different spinning conditions. The thickness of these mats was then 

measured using the aforementioned buoyancy and micrometer methods. The thickness data were 

non-dimensionalized using fiber density and mat’s basis weight (weight per square meter) as 

shown in Figure 2.10a. We fitted these data with a linear curve, for the lack of a better justifiable 

alternative, i.e.,  

𝜏 = 𝑎0𝑑𝑓 + 𝑎1                                                                  (2.14)          
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where 𝜏 = 𝑡⍴ 𝑊𝑏⁄  is dimensionless thickness and 𝑑𝑓 is fiber diameter. In this equation, 𝑎0and 𝑎1 

are the curve fit coefficients, and they are found to be 𝑎0 = −1.98
1

𝜇𝑚
 and 𝑎1 = 25.15, for data 

from micrometer measurements, and 𝑎0 = −1.55
1

𝜇𝑚
 and 𝑎1 = 25.85 for the data from the 

buoyancy method. Given the errors associated with the measurement techniques, we averaged the 

curve fitting coefficients to obtain a single equation for dimensionless thickness, as 

 𝜏 = −1.75𝑑𝑓 + 25                     (2.15)          

Figure 2.10: Dimensionless thickness obtained from the buoyancy method and micrometer 

measurements are compared with one another in (a). The dashed line used to show the Buoyancy 

method results. PS concentration was varied from 20% to 30% but flow rate, voltage, and NCD 

were fixed at 0.5 ml/h, 11 kV, and 10 cm, respectively. Possible spring coefficients to generate a 

virtual PS mat with a dimensionless thickness matching that from experiment is given in (b) for 

different fiber diameters and damping constants.   

 

Using this empirical correlation, one can estimate the thickness of the electrospun PS mats for the 

range of fiber diameters shown in Figure 2.10a. More importantly, this correlation has been used 
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in this study to calibrate our PS mat generation algorithm. For the calibration process, we found 

the spring and damping coefficients that could be used to generate virtual mats with average 

dimensionless thickness values matching those obtained from Equation 2.15 for a fiber diameter 

in the range of 2 to 6 µm. More specifically, Figure 2.10b shows spring constants that can be used 

to generate a mat with an average dimensionless thickness matching that from Equation 2.15 for 

any fiber diameter from 2 to 6 µm using an arbitrary damping constant in the range of 108 < 𝜅𝑑 <

109𝑁. 𝑠 𝑚⁄ . 𝑘𝑔. It is interesting to note that larger spring constants are obtained for thinner fibers. 

This is because increasing the diameter of the fiber, decreases the number of beads required to 

represent that fiber in the mat generation algorithm (fibers are made of beads with a diameter equal 

to that of the fiber). This in turn, decreases the number of springs and dampers needed to connect 

the beads to one another, and consequently, increases the rigidity of the fiber [95]. Information 

given in Figure 2.10b are used to produce a third-order correlation for spring constant 𝜅𝑠 as a 

function of fiber diameter, as given below.  

𝜅𝑠 = 𝛽0 + 𝛽1𝑑𝑓 + 𝛽2𝑑𝑓
2 + 𝛽3𝑑𝑓

3
             (2.16)          

In this equation, 𝛽0 = 𝜆00𝜅𝑑
𝜆01, 𝛽1 = 𝜆10𝜅𝑑

𝜆11, 𝛽2 = 𝜆20𝜅𝑑
𝜆21, and 𝛽3 = 𝜆30𝜅𝑑

𝜆31, where𝜆00 =

−7 × 1010,𝜆01 = −1.92,𝜆10 = 4 × 10
11,𝜆11 = −1.74,𝜆20 = −3 × 10

12,𝜆21 = −1.78, 𝜆30 =

3 × 1012 and 𝜆31 = −1.70. The damping constants are in the range of 108 to 109𝑁. 𝑠 𝑚⁄ . 𝑘𝑔. 

With the calibrated code, one can produce virtual PS mats with different average fiber diameters 

and use them to estimate the thickness (or porosity) of an actual PS mat. In addition, such mats 

can be used in virtual design of fibrous media for various applications such as droplet-air or 

droplet-liquid separation (e.g., Refs. 120 and 127), functional coatings [10,11,88,128,129] or 

superhydrophobic layers [130,131] among many other applications. Note that our mat generation 
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algorithm is calibrated using a fixed, but yet quite common, set of electrospinning parameters (e.g., 

𝑉0 = 11 𝑘𝑉 and 𝐻 = 10 𝑐𝑚). The proposed spring and damping coefficients therefore become 

less accurate when the electrospinning conditions are significantly different from those considered 

here.   

 

Figure 2.11: A sample virtual PS mat made of fibers with a diameter of 3 μm and having a basis 

weight of 4 g/m2 is shown in (a) along with a magnified image showing bending of the fibers at 

cross-overs in (b). Predictions of our calibrated code for the effects of fiber diameter on porosity 

and dimensionless thickness are given in (c).  
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Figure 2.11a shows an example of the PS mats produced using our calibrated mat generation code. 

The mat has a basis weight of 4𝑔 𝑚2⁄  and it is comprised of fibers with a diameter of 𝑑𝑓 = 3 𝜇𝑚 

deposited with a velocity of 20 m/s. The average thickness and average porosity for these mats 

were found to be about 78.4 𝜇𝑚 and 94.7%, respectively. The magnified image in Figure 2.11b 

shows the bending of the fibers at crossovers. Figure 2.11c shows porosity and dimensionless 

thickness versus fiber diameter for PS mats having a constant basis weight of 4𝑔 𝑚2⁄ . It can be 

seen that mats made up of thicker fibers (identical basis weights) have lower porosity and thickness 

values [95]. 

 

To demonstrate how the computational tool developed in this study can be used in predicting the 

outcome of an electrospinning process, we present the effects of electrospinning parameters (e.g., 

voltage or NCD) on thickness of the resulting virtual mats. To generate these results, we first ran 

the filament formation code to quantify the effects of electrospinning parameters on filament 

diameter and filament deposition velocity. We then used this information in the mat generation 

code to create 3-D fibrous structures and obtain their average thickness or porosity. Effects of DC 

voltage on filament diameter depends on the type of polymer used in the spinning process. Fiber 

diameter has been reported to increase with increasing voltage for certain polymers [124,126,133-

136], but to decrease for some other polymers [116,125,137,138]. Our simulations for PS indicate 

that increasing DC voltage from 10 kV to 25 kV increases the filament diameter and deposition 

velocity by about 250% and 30%, respectively (Figure 2.12a). We believe this is because 

increasing the voltage increases the velocity of the PS jet (shortens the time of travel as can be 

seen in the inset figure) leaving insufficient time for evaporation to further reduce the filament 

diameter (increasing the voltage increases the attraction force on the filament acc. to Equation 2.5). 
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The results shown in Figure 2.12a are in qualitative agreement with the experimental results 

reported in Ref. 48. Contrary to the results shown in Figure 2.12a, increasing the NCD from 5 cm 

to 15 cm seems to decrease the filament diameter and deposition velocity by about 300% and 25%, 

respectively, as can be seen in Figure 2.12b. The decreased velocity (i.e., increased time of travel 

as shown in the inset) allows more time for the filament to reduce its diameter through solvent 

evaporation. This is in agreement with the reported observations in the literature that increasing 

NCD results in a decrease in fiber diameter and also an increase in mat thickness (which is in 

agreement with our simulation results in Figure 2.13b) [125,126,135,138,139].  

Figure 2.12: Fiber diameter and fiber deposition velocity obtained from simulating PS filaments 

are shown in (a) and (b) versus DC voltage and NCD, respectively. The inset figures show the time 

of flight. 

 

Figures 2.13a and 2.13b present the effects of DC voltage and NCD on porosity and dimensionless 

thickness of resulting PS mats. It can be seen that mat porosity and thickness tend to decrease with 

voltage but to increase with NCD.  
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Figure 2.13: Porosity and dimensionless thickness are shown in (c) and (d) for the virtual 

electrospun mats obtained fibers produced in (a) and (b), respectively. 

 

The decrease of mat thickness with increasing voltage is believed to be due to the increase of the 

fiber diameter with voltage (Figure 2.12a). The increase in fiber diameter in turn decreases mat’s 

dimensionless thickness (Figure 2.11c). Likewise, the mat dimensionless thickness increases as 

the fiber diameter decreases with increasing NCD (Figure 2.12b).  

For completeness of the study and additional verification, we have compared the predictions of 

our model with those reported in Ref. 48. Figure 2.14 presents dimensionless filament diameter 

versus NCD and DC, and to make the comparison possible, the filament diameter is normalized 

using that obtained for a reference case of 𝐻
𝑟𝑒𝑓

= 10 cm and 𝑉0
𝑟𝑒𝑓

= 10 kV. The agreement 

between the model predictions is reasonable, given the fact that the polymer used in our work (i.e., 

PS) is different from the one considered in Ref. 48.  
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Figure 2.14: Fiber diameter obtained from simulating PS filaments are shown versus DC voltage 

and NCD, respectively, for present work and Thompson et al. 2008 [48].  

 

2.5 Conclusions 

Interested in quantifying the impact of varying different electrospinning parameters on the 

morphology of the resulting fibrous materials, we combined the electrospinning model of Yarin 

and Reneker and their co-workers [33,34] with our structure generation algorithm (see Ref. 95). 

PS mats from different PS solution concentrations were also produced and used to 1) validate the 

filament simulation code (see Figure 2.10b), and 2) calibrate the structure generation algorithm 

(see Figure 2.11). The calibrated simulations were then used to quantify the role of voltage and 

NCD in electrospinning fibrous mats. Our results indicate that increasing the voltage or decreasing 

the NCD increases the diameter of the resulting fibers but decreases the dimensionless thickness 

and porosity of the fiber-mats (see Figure 2.13). 
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A unique attribute of the computational tool developed in this work is the ability to create 3-D 

fibrous structures comprised of non-penetrating fibers with fiber curvatures realistically obtained 

from a physics-based mathematical model for the first time. Such virtual structures can be used as 

a platform for additional studies in a variety of applications requiring an accurate representation 

of surface morphology (e.g., self-cleaning coatings) or internal structure of the fibrous media (e.g., 

separation/filtration media).  
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Chapter 3. Empirical Model to Simulate Morphology of Electrospun Polycaprolactone 

Mats 

 

3.1 Introduction 

Electrospinning is a low-capital-cost method of producing micro- or nano-fibers for applications 

like tissue engineering, particle filtration, membrane desalination, catalysis, self-cleaning, drug 

delivery, and sensing among many others [1,3,11,12,14,25,80,87,140,141]. A major challenge in 

fiber electrospinning is the lack of control over fiber orientation or position in the resulting 

electrospun mats. This makes very difficult to design and produce an electrospun mat with a 

desired porosity of pore size. It is also quite difficult to accurately measure the thickness, porosity, 

or surface roughness of electrospun fibrous mats as they are often very thin and soft [87]. Structural 

simulation can generally be of great help in such conditions, but unfortunately, the complex nature 

of electrospinning process makes it very difficult to develop an accurate model to describe and 

predict the outcome of an electrospinning experiment. Yarin and Reneker were the first to develop 

a mathematical model to simulate the trajectory of an electrospun filament as it leaves the needle 

until it reaches the collector [33,35,36]. Their model incorporates the contribution of solution flow 

rate, solution viscosity, relaxation time, and electrical potential in fiber attenuation. The work of 

Ref. [33,35] was later used to develop subsequent numerical models to include the effects of air 

drag force or the effects embedded nanoparticles on filament trajectory during electrospinning 

[43,46,47,50]. Our group also used the work of Ref. [33-35] to simulate formation of a Polystyrene 

(PS) filament in an electrospinning setup, and use resulting information in an in-house mass-
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spring-damper (MSD) model to study the effects of electrospinning conditions (e.g., voltage or 

needle-to-collector distance) on mat thickness or porosity [15]. In the current work, we improved 

our MSD algorithm by allowing the fibers to have an in-plane curvature (needed for simulating 

mats consisting of curly fibers) and also used single-fiber mechanical properties for calibration. 

The current chapter presents simulation of electrospun PCL fiber-mats as an example of fibrous 

mats made up of curly fibers. In the current chapter, we also discuss challenges involved in 

modeling a mat comprised of randomly-distributed curly fibers.   

 

The remainder of this chapter is structured as follows. We discuss our experimental and numerical 

procedures in Section 3.2 and 3.3, respectively. In Section 3.4 (Results and Discussion), we first 

obtain fibers’ deposition diameters (and velocities) and compare them with their counterpart 

observed experimentally. We then present a calibration study devised to obtain representative 

spring and damping constants for our MSD model using experimental data reported for PCL 

nanofibers. With this information gathered, we generate a series of virtual fibrous geometries 

comprised of curly fibers and discuss their properties relative to those obtained experimentally. 

This is followed by our conclusions in Section 3.5. 

 

3.2 Experiment 

As the main objective of the work presented here was to simulate fibrous mats with curly fibers, 

we considered Polycaprolactone (PCL) as a suitable polymer for our experiment. The other 

advantage of using PCL in our study is the availability of experimental data about their mechanical 

properties (single-fiber data). The PCL was purchased from Aldrich, MO, USA, and it was 
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reported to have an average molecular weight of 80,000 g/mol. To make a PCL solution suitable 

for electrospinning, PCL pallets were dissolved in Acetone (ACS grade) mixture with methanol 

(ACS grade) with a 3 to 1 weight fraction ratio. A conventional electrospinning setup consisting 

of a syringe pump (New Era Pump System, Inc., Farmingdale, NY) with a 22-gauge stainless steel 

needle (Jensen Global, Santa Barbra, CA) and a DC power supply (Matsusada High Precision Inc., 

Shiga, Japan) was used in the experiment, as can be seen in Figure 3.1. We considered a needle-

to-collector distance (NCD) of 15 cm, a voltage of 14 kV, and a flow rate of 1 mL/hr.  The fibers 

were deposited on Aluminum foils, and imaged using an SEM microscope (JEOL LV-5610, 

Peabody, MA). The SEM images were then used to measure the diameter of the spun fibers in the 

mats (see Figure 3.1) using the ImageJ software, and to obtain a fiber diameter distribution for 

each mat (75 measurement per SEM image, 3 SEM images per sample).  

 

Figure 3.1: Our electrospinning setup is shown along with an SEM example and a fiber diameter 

distribution obtained from the spun PCL mats. 
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In order to measure the thickness of nanofiber mats, a sample of about 7.5 cm × 2.5 cm in 

dimensions were cut from the central portion of the mats (deposited on Al foils) and placed 

between two glass slides using a double-sided tape. The mat thickness was estimated by 

subtracting the thickness of all other components (two glass slides, aluminum foil, and tapes), 

measured using a micrometer (Mitutoyo), from the thickness of the entire assembly (See Figure 

3.2). Such measurements were conducted on multiple locations across the sample and careful 

attention was paid to minimize deformation or compression of the samples (though inevitable) 

during the measurements.   

 

Figure 3.2: Using Micrometer to Measure the Thickness. 

 

3.3 Numerical Simulation 

Our electrospun mat simulations are comprised of two separate steps: 1) fiber formation, and 2) 

mat generation. For the fiber formation step, we simulate the formation of a PCL filament from 

the needle via a Python implementation of the model of [33,34]. This was done to obtain the 

diameter and velocity of the spun fibers at the moment of deposition onto the collector. This 

information is then used in our MSD mat-generation code to create a 3-D fibrous mat made up of 

hundreds of such individual fibers deposited on top of one another. 
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Figure 3.3: The fiber electrospinning model of [33,34] is shown. The viscoelastic force fve and the 

surface tension force fst point to the fiber’s center of curvature to restore the rectilinear shape. The 

Columbic force fc sums all the repulsive interactions between the beads. The imposed external 

electric potential V0 is shown with a vertical arrow.  

 

The algorithm of [33,34] uses the Maxwell viscoelastic concept to model a fiber as it leaves the 

needle. It treats the spun fiber as an array of beads with volatile (time-dependent) masses 

interconnected by springs and dampers (viscoelastic elements) in series (see Figure 3.3). The 

model includes the mechanical (viscoelastic and surface tension) forces as well as the electrical 

(Columbic and electrostatic) forces (see Figure 3.3). Solving a system of couple ODEs each 

representing Newton’s 2nd law written for a bead in the fiber results in the instantaneous position 

and velocity of the beads constituting the filament during their needle-to-collector travel. The 

model of [33,34] also includes the evaporation of the solvent during the fiber formation which is 

important in obtaining accurate estimate for the final diameter and velocity of the fiber before 
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reaching the collector. The fiber formation simulations start with two beads initially (to make the 

first filament segment). Throughout the simulation time, beads will continuously be ejected from 

the needle (a bead is ejected as soon as the distance between the last bead and the needle becomes 

greater than 0.05% of the NCD) and tracked until the first bead reaches the collector at 𝑧 = 0, 

where the simulation stops. The mathematical equations for the fiber formation steps are not 

presented here for the sake of brevity, but they can be found in [33-35] or our recent work on 

modeling electrospun Polystyrene [15]. Table 3.1 provides the input values needed to use this 

model to simulate PCL fibers.  

Table 3.1: Input parameters for PCL electrospinning simulation. 

Model input Value 

Density ρ 1.145 kg/m3 

Fiber diameter at the nozzle a0 15×10-3 cm 

Charge density e 8.48 g1/2cm3/2/s 

Surface tension α 35 g/s2 

Applied voltage V0 14 kV 

Flow rate q 1 ml/h 

Elastic modulus G 12×106 g/cm s2 

Relaxation time θ 15 ms 

Needle to collector distance H 15 cm 

 

Our MSD mat-generation algorithm creates realistic 3-D fibrous structures via a sequential 

deposition of fibers on top of one another [15,95]. The model is based on treating the fibers as an 

array of beads connected to one another with springs and dampers arranged according to the 
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Kelvin-Voigt model [15,95,96]. Writing Newton’s 2nd law for each bead in the fiber, we obtain 

(see Figure 3.4a), 

𝑓𝑖
∑
= 𝑓𝑖,𝑖−2

𝑠 + 𝑓𝑖,𝑖−1
𝑠 + 𝑓𝑖,𝑖+1

𝑠 + 𝑓𝑖,𝑖+2
𝑠 + 𝑓𝑖,𝑖−2

𝑑 + 𝑓𝑖,𝑖−1
𝑑 + 𝑓𝑖,𝑖+1

𝑑 + 𝑓𝑖,𝑖+2
𝑑 + 𝑓𝑖

𝐶   (3.1) 

 

where 𝑓𝑖,𝑖+1
𝑠  and 𝑓𝑖,𝑖+1

𝑑 are the forces due to springs and dampers on bead ith. The outputs 

(deposition velocity and fiber diameter) from the fiber formation simulation are used as inputs to 

the mat generation code. The instantaneous position and velocity of the beads in a fiber can be 

obtained by numerically (Runge–Kutta 4th order) solving the system of coupled ODEs that results 

from writing Equation 3.1 for every bead in the fiber. The uniqueness of this model is that it is 

capable of simulating the curvature of the fibers at the fiber–fiber crossovers without allowing the 

fibers to penetrate into one another, which is a major advantage over the previous fiber-mat 

generation methods [97-104,117-120,142]. 
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Figure 3.4: Our MSD model is shown in (a) [95]. The Spirograph profile is shown in (b) and it 

consists of a larger stationary circle, with a radius of R, and a smaller rolling circle, with a radius 

of r. The parameter a is shown in (b). 

 

As mentioned earlier, the straight-fiber restriction is removed from the mat generation algorithm 

in the present work. This allows us to create 3-D microstructures that better resemble that of an 

electrospun mat comprised of curly fibers (e.g., the PCL fibers shown Figure 3.1). There are 

however many challenges involved in simulating a fibrous mat when the constituting fibers are 

not straight [143]. The first and foremost is the lack of any form of mathematical equations that 
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can describe the curvature of the fibers in mats like the one shown in Figure 3.1. In the absence of 

such information, one can only assume an arbitrary shape for the fibers, and hope that the end 

results (the average properties of the simulated mats agree with those obtained from 

measurements). To this end, we considered the Spirograph profile for the fibers based on an earlier 

suggestion [89]. Equations 3.2 and 3.3 represent the x and y positions of each point on the adopted 

Spirograph profile (Figure 3.4b), respectively. 

𝑥𝑖(𝑡) = (𝑅 + 𝑟)cos (
𝑟

𝑅
𝑡) − 𝑎cos (1 +

𝑟

𝑅
𝑡)       (3.2) 

𝑦𝑖(𝑡) = (𝑅 + 𝑟)sin (
𝑟

𝑅
𝑡) − 𝑎sin (1 +

𝑟

𝑅
𝑡)       (3.3) 

The numerical values considered for Equations 3.2 and 3.3 will be discussed later in Section 3.4. 

Note that, while a more reasonable choice for R would have been a value closer to the actual x-y 

dimensions of the mats from experiments (i.e., 5–10 cm), that would have increased the size of the 

simulations (and so the simulation CPU time) by orders of magnitude for no clear gain, as the 

radius r would have still been an arbitrary value. 

The dynamics of fibers depositing on top of one another (and bending at the fiber–fiber crossovers) 

can be simulated through solving a system of coupled differential equations similar to the one 

given below, 

𝑑

𝑑𝑡
[
𝑣𝑖 

𝑟𝑖
] = [𝑓𝑖

∑
/𝑚𝑖
𝑣𝑖

]           (3.4) 

Stiffness for an ordinary differential equation is a time-consuming problem that occurs when some 

components of the solution decline much more rapidly than others [144], so the numerical method 

must take small steps and self-error check to obtain satisfactory results [145]. An in-house C++ 

computer code has been developed to solve the coupled Ordinary Differential Equations (ODE’s). 
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‘Odeint’ library is used for numerically solving ODE’s. The numerical algorithms are implemented 

in the code. The system of ODE’s in Equation 3.4 is solved using the Runge-Kutta-Dopri5 

(Dormand-Prince 5 algorithm) method with a time step of 2 × 10−6 𝜇𝑠 and it obtains from trial-

and-error method to avoid the stiffness issue (Simulation is done for 2 × 10−3 𝜇𝑠 that did not 

converge). Runge-Kutta-Dopri5 is the standard method with error control [146]. The simulation 

for larger time steps does not converge and could not predict the collision. Our collision detection 

algorithm searches for a collision between the beads in a new incoming fiber and those of the 

deposited fibers in the mat. The distance could not be less than 0.001 μm. The incoming fiber gets 

affected by the collisions and bends and deforms as needed but the deposited fibers are immobile 

(do not move or deform regardless of the impact force exerted on them by the incoming fibers).  

 

3.4 Results and Discussion 

Starting with the results from electrospinning simulations, Figure 3.5a presents snapshots of our 

fiber formation simulations for an electrospun PCL fiber produced at the same spinning conditions 

as the experiments (a voltage of 𝑉0 = 14 kV, a NCD of 𝐻 = 15 𝑐𝑚, and a PCL concentration of 

𝐶 = 15 𝑤𝑡% , see Section 3.2). Figure 3.5b shows the filament’s radial and axial velocity profiles 

(velocities across the length of the filament from the needle to the collector). Note the axial 

disposition velocity of the fiber (circled in the figure), as it will later be used in our mat simulation. 

 

 

 



www.manaraa.com49 
 

Figure 3.5: Examples of our PCL trajectory simulations is in (a) at two different simulation times. 

Filament’s local velocity profiles (beads velocity) is given in (b). 

 

Figure 3.6a shows the filament diameter as it travels from the needle to the collector. It can be seen 

that filament diameter reduces from about 70 μm to about 1 μm due to the combined effects of 

solvent evaporation and mechanical stress along the filament. The results shown in Figure 3.6a are 

in qualitative agreement with the work of Ref. 147 who modeled the polymer jet flow to study the 

effects of air flow on filament diameter. Figure 3.6b shows the effects of PCL concentration of the 

final filament diameter (diameter of the electrospun fibers). We have also included experimental 

data (from SEM images) obtained for PCL mats produced from solutions with different 

concentrations. Good general agreement can be seen between the predicted and measured fiber 

diameters. The increase in the fiber diameter as a result of increasing polymer concentration is in 

qualitative agreement with the experimental work of [124-126]. 
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Figure 3.6: Filament’s local diameter profiles (beads diameter) is given in (a). Average fiber 

diameter is shown versus PCL solutions concentration (b). Experimental data are also added from 

electrospinning PCL with flow rate of 1 ml/h, applied voltage of 14 kV, and a NCD of 15 cm.  

 

The experimental data reported in [148] for the bending of a single PCL nanofiber, mounted on a 

TEM grid with a spacing of 10 µm (see force-deflection data in Figure 3.7a), are used here to 

calibrate the stiffness of the fibers in our model in this work. To do so, we considered a fiber with 

the exact same diameter (420 nm) as the one used in the experiment of [148], and fixed it between 

two rigid support 10 µm apart.  
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Figure 3.7: Force-deflection data taken from the single-fiber experiment of [148] are shown in 

(a). Our computational counterpart of this experiment is shown in (b). 

 

To simulate the force applied to the fiber by the AFM microscope tip in [148], we applied a local 

downward force to the bead in the middle of the fiber (see Figure 3.7b). Considering three different 

damping constants but varying spring constants, we obtained different force-deflection data from 

our single-fiber simulations (see Figure 3.8). The damping 𝜅𝑑 and spring 𝜅𝑠 constant combination 

that resulted in the same force-deflection slope as the one measured experimentally, was 

considered in our simulations. 
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Figure 3.8: The damping and spring constants resulting in a force-deflection slope matching that 

from experiment of [148] are located with red dotted lines. 

 

Figure 3.9a shows an 1𝑚𝑚 × 1𝑚𝑚 example of our virtual mats with a basis weight of 2𝑔 𝑚2⁄  

comprised of curly PCL fibers with a fiber diameter of 𝑑𝑓 = 0.8 𝜇𝑚 (fibers deposition velocity 

and diameter were obtained from the fiber formation simulation of Figure 3.6). Using the 

relationship given in our previous work in [95], the spring and damping constants obtained in 

Figure 3.8 for a fiber with a diameter of 420 nm are scaled to 𝜅𝑠 = 5 × 10
18𝑁 𝑚⁄ . 𝑘𝑔, and 𝜅𝑑 =

8 × 106𝑁. 𝑠 𝑚⁄ . 𝑘𝑔 for a fiber with a diameter of 𝑑𝑓 = 0.8 𝜇𝑚. An SEM image showing our PCL 

mats from a somewhat isometric view is also included in this figure to better show the roughness 

of the mat surface (Figure 3.9b). The average thickness and average porosity of the virtual PCL 

mat shown in this figure were found to be 28.8 𝜇𝑚 and 93%, respectively. Figure 3.9c also reports 

the dimensionless thickness (divided by basis weight, multiplied by PCL density of 𝜌 = 1145 

kg/m3) and porosity values for our simulated PCL mats versus fiber diameter. Experimental 
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thickness and porosity values are also added to this figure for comparison. Our results show that 

increasing fiber diameter decreases the porosity of the resulting mat but by a small amount. As 

mentioned earlier, in the absence of quantitative information about the shape and curvature of curly 

fibers in a PCL mat, one has to consider arbitrary values to be able to proceed.  

 

Figure 3.9: A sample virtual mat with a basis weight of 2𝑔 𝑚2⁄  made of fibers with a diameter of 

0.8 μm is shown in (a) along with an SEM image PCL mat electrospun with a voltage of 14 kV, 

NCD of 15 cm, and a flow rate of 1 ml/h in (b). Predictions of our calibrated code for the effects 

of fiber diameter on porosity and dimensionless thickness are given in (c), and are compared in 

their experimental counterparts. 
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In this work, we considered R = 60 µm, r = 10 µm, and a = 16 for our simulations as they provided 

matching agreement with experimental data (found through trial-and-error). Obviously, there can 

be many other combinations of R, r, and a (or even other fiber curly profiles) that can result in 

mats with the same average thickness or porosity. These values are only examples of such input 

values and considered to limit the CPU time required for the simulations (large R values require 

longer CPU times). Using these empirically-obtained parameters, we used our calibrated code to 

study the effects of voltage and NCD on mat porosity and thickness. To do so, we first calculated 

the effects of voltage and or NCD on the final fiber diameter and deposition velocity, and then 

used this information in the calibrated mat code to generate 3-D virtual mats and obtain their 

average porosities. 

 

Our simulation indicates that increasing DC voltage from 10 kV to 25 kV increases the fiber 

diameter and deposition velocity by about 250% and 100%, respectively (Figure 3.10a). This 

seems to be due to reduction of the time of travel (leaving insufficient time for evaporation to 

further reduce the fiber diameter) as a result of increasing the attraction force on the fiber. Note 

that both the increase and decrease of fiber diameter with voltage have been reported in the 

literature for certain polymers (e.g., [48,116,125,135,137,149]).  
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Figure 3.10: Fiber diameter and fiber deposition velocity obtained from simulating PCL fibers are 

shown in (a) and (b) versus voltage and NCD, respectively. The inset figures show the fiber’s time 

of flight. 

 

With regards to NCD, it has generally been reported that increasing the working distance would 

result in a decrease in the fiber diameter (and so an increase in the mat thickness) 

[48,116,125,135,137,149]. This has also been observed in our simulations (Figure 3.10b), and can 

be explained considering the extended time of travel (or solvent evaporation time). 

 
Figure 3.11: Porosity and dimensionless thickness are shown in (a) and (b) for the virtual PCL 

mats, using information shown in Figure 3.10, respectively. 
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Figures 3.11a and 3.11b show the effects of DC voltage and NCD on porosity and dimensionless 

thickness of PCL mats. It can be seen that mat porosity tends to decrease with increasing the 

voltage but increases with increasing NCD in accordance with the effects of these parameters on 

fiber diameter (Figures 3.10a, 3.10b, and 3.9). 

 

3.5 Conclusions 

Treating the fibers in an electrospun fibrous mat as an assembly of straight fibers is an acceptable 

approximation and it has been considered in many previous models aimed to simulate the 3-D 

microstructure of a fibrous material. In this work however, we have considered curly fibers in 

producing virtual fibrous media, for the first time. In the absence of a universal definition for the 

shape of a curly fiber, we have considered an epitrochoid-like profile based on [89]. With their 

deposition diameter and velocity obtained from simulating the electrospinning process, these curly 

fibers were stacked on top of one another to create non-penetrating 3-D fibrous mats with 

geometries that resembles the microstructure of an actual PCL nonwoven mat in many ways. The 

simulation method presented here allows one to study the effects of voltage, needle-to-collector 

distance, or polymer concentration on the morphology of the resulting electrospun PCL materials. 

Numerical results from our experimentally-calibrated simulations indicate that increasing the 

voltage or decreasing the needle-to-collector distance increases the diameter of the resulting fibers 

but decreases the porosity of the fiber-mats.  

The structure generation method developed in this work allows one to create 3-D virtual fibrous 

geometries to simulate the flow of fluids or particles through fibrous membranes or to simulate 

their mechanical properties. 
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Chapter 4. Modeling Electrospun Fibrous Structures with Embedded Spacer Particles: 

Application to Aerosol Filtration 

 

4.1 Introduction 

Electrospinning is a one-step method to produce a fibrous material by simply dissolving a polymer 

in a chemical solvent and electrifying the resulting solution through a needle [140,150]. An 

intriguing attribute of the electrospinning process is the possibility of varying the spinning 

conditions or the concentration of the polymer solution to produce a combination of fibers and 

beads through promoting or preventing the breakup of the electrified polymer jet (e.g., [72-74,151-

155]). More specifically, one can often go from a fiber-only morphology to a fibers-and-beads or 

to a beads-only morphology by varying the polymer concentration, DC voltage, needle-to-collector 

distance (NCD), and/or polymer flow rate (see e.g., [72-74,151-155]). Electrospinning can also be 

used to embed external particles inside (e.g., [63,64,156,157]) or between (e.g., [158–159]) the 

fibers to incorporate additional functionalities in a fibrous material (the latter is often achieved via 

simultaneous electrospinning–electrospraying). The particles trapped between the fibers can also 

provide structural benefits to a fibrous material. These particles, for instance, can serve as 

“spacers” between the fibers and help to increase the porosity of an electrospun material, and 

thereby improve its performance in applications like tissue engineering [160], particle or droplet 

filtration/separation [161], or water desalination [162] among many others.  
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Generating virtual fibrous geometries that resemble the 3-D microstructure of a fibrous material 

has proven to be valuable in design and development of nonwoven media for applications like 

aerosol filtration [84,104,120], fluid transport [101,163,164], heat insulation [103,165], or modern 

textiles in general [96,166,167]. The current work is the first to report simulation of fibrous 

structures in presence of spacer particles. As will be discussed later in the chapter, this can only be 

accomplished with a simulation algorithm that allows a fiber to adjust its shape to the shape of the 

3-D objects (e.g., fibers or particles) to which it is in contact, and in doing so, respects the fiber 

mechanical properties (e.g., stiffness). Needless to say that, the algorithm should detect and 

prevent any solid–solid interpenetration (obviously non-physical) to occur for the simulations to 

realistically and accurately represent the morphology of the material.     

 

The remainder of this chapter is structured as follows. We first present our experimental work on 

electrospinning fibers and beads in Section 4.2, and then move on to discuss our numerical 

simulations in Section 4.3. In Section 4.4, we present a set of analytical equations that can be used 

to estimate the collection efficiency and pressure drop of a filtration media comprised of fibers and 

spacer particles. Our results and discussion are given in Section 4.5, where we present an example 

for the practical applications of the structure simulation algorithm developed in this work in the 

field of aerosol filtration. This is followed by our conclusions in Section 4.6.  

 

4.2 Electrospinning Polystyrene Beads Embedded in Polyurethane Fibers 

Polyurethane (PU) and polystyrene (PS) pallets (from Aldrich, Missouri) with average molecular 

weights of 550,000 and 350,000 g/mol, respectively, were dissolved in THF (HPLC grade from 
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Fisher Scientific, Fair Lawn, New Jersey). The solutions were stirred at room temperature 

overnight until they were macroscopically homogeneous and then were stored at 4°C. The PU and 

PS solutions were electrospun at a constant rate of 1 ml/h using a conventional electrospinning 

setup (see Figure 4.1) with a NCD of about 10 cm. The setup was comprised of a New Era syringe 

pump (Farmingdale, New York) having a stainless-steel needle with an inner diameter of 0.508 

mm (Jensen Global, Santa Barbra, California) and a power supply (from Matsusada High Precision 

Inc., Shiga, Japan) set to a constant DC voltage of 12 kV.  

 

Figure 4.1: Schematic of the electrospinning setup used for our experiments. 

 

A concentration of 5% was considered (obtained empirically) for the PU solution as it resulted in 

bead-free electrospun fibers with an average diameter of about 1 µm. To produce fiber-free PS 

beads, we used a PS concentration of less than 10%. We also varied the concentration of PS from 

5 to 10% to produce PS beads with different average diameters ranging from about 10 µm to about 

20 µm (bead diameters were measured from SEM images taken from a 10×10 mm central portion 

of the area covered by the beads).  Alternating between PU and PS depositions, we produced 

composite bead-embedded fibrous structures comprised of five layers of PS beads embedded in 

six layers of PU fibers for a total electrospinning time of 40 minutes (30 minutes for the PU fibers 
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and 10 minutes for the PS beads), as can be seen in Figure 4.2. Note how the PS beads serve as 

spacer between the some of PU fibers (the SEM images on the left side of Figure 4.2 are from a 

solution with a PS concentration of 5% whereas those on the right are obtained using 10% PS 

concentration). 

 

Figure 4.2: Selected SEM images of PU–PS mats produced via electrospinning. The mat on the 

left side are from a solution with a PS concentration of 5% whereas those on the right side are 

obtained using 10% PS concentration. Note how the PS beads are caged between the fibers. 

 

With the spinning time for each polymer kept constant, we increased the concentration of PS from 

5 to 10% (as it was shown to increase the diameter of the PS beads) to study how increasing bead 

diameter affects the overall thickness of the resulting composite media as can be seen in Figure 

4.3. Thickness of the PS–PU composite structures were measured by cutting 7.5𝑐𝑚 × 2.5𝑐𝑚 

rectangular samples from the central portion of the deposition area. These samples were placed 
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between two microscope slides (with known thickness), and the thickness of the sandwich 

structure was measured at different locations using a micrometer (from Mitutoyo) to estimate the 

average thickness of the media. It can be seen that increasing the PS concentration increases the 

thickness of the media. It is important to note here that increase PS concentration also increases 

the overall basis weight of the media (results in more material deposition). However, it is not easy 

(though not impossible) to accurately determine the rate of increase of basis weight with PS 

concentration, due mostly to the variation of the spatial distribution of the beads in the mat with 

PS concentration (determining the mass fractions of PU and PS in a composited media requires a 

more controlled and dedicate set of experiments an is beyond the scope of this work).  

 

Figure 4.3: Thickness of the PU–PS mats vs. concentration of PS in THF (for a fixed PU 

concentration of 5% in THF). The inset figure shows beads average diameter vs. PS concentration. 

 

4.3 Simulating Electrospun Fibers with Spacer Particles 

Thanks to the wealth of knowledge in the electrospinning literature, it is now quite easy to setup a 

conventional electrospinning unit and produce nanofiber materials. However, unfortunately, it is 
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not easy to accurately predict the outcomes of an electrospinning experiment in terms of fiber 

diameter distribution or fiber spatial distribution (basis weight distribution) in an electrospun mat. 

This has served as the motivation for many computational studies, like the pioneering model of 

Reneker and Yarin [33,34] or the recent work of Refs. [43,46,47,50]. These models simulate the 

attenuation of the electrified polymer jet in electrospinning using a virtual array of charged solid 

spheres connected to one another via springs and dampers according to the Maxwell model 

(springs and dampers arranged in series to represent the viscoelasticity of the polymer jet). These 

models consider the mechanical (viscoelastic and surface tension) and electrical (Columbic and 

electrostatic) forces acting on each sphere (see Figure 4.4a) to produce a system of coupled ODE’s 

each representing Newton’s 2nd law for one of the spheres in the polymer jet. Solving this system 

of ODEs results in the position and velocity of the spheres constituting the jet during its travel 

from the needle to the collector as a function of time. Interested in knowing the diameter and 

velocity of the polymer jet (i.e., the fiber) at the moment of deposition on the collector, we 

implemented the model of Reneker and Yarin [33,34] in a computer program written in Python 

language (mathematical equations are not presented here for the sake of brevity, but they can be 

found in [33,34] or in our recent work on modeling electrospun Polystyrene [15]).  With this 

information, we simulated the 3-D structure of electrospun PS and PCL (Polycaprolactone) fibrous 

mats using an in-house C++ computer program we developed according to the Kelvin–Voigt 

model (springs and dampers arranged in parallel positions to represent the viscoelasticity of the 

solid fibers, as shown in Figure 4.4b) [15,16,95]. This model allows one to study the effects of 

electrospinning conditions or polymer properties on the 3-D morphology of the resulting fibrous 

materials (modeled as non-interpenetrating flexible fibers with their stiffness incorporated in the 

model based on their bending characteristics). In this work, we advance the state of art in modeling 
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electrospun fibrous materials by placing spacer particles of different diameters or populations in 

between the fibers and thereby studying their effects on the thickness and porosity of the resulting 

composite structures (equations for the mat generation algorithm are not presented here for the 

sake of brevity, but they can be found in [15,95]). 

 

Figure 4.4: Mass–spring–damper models used for simulating polymer jet attenuation during 

electrospinning and for 3-D fibrous mat generation are shown in (a) and (b), respectively.  

 

We start our simulations by first modeling the formation and travel of an electrospun polymer jet 

from the needle to the collector to obtain the final diameter and velocity of the resulting fiber. We 

then use this information to model the formation of a fibrous mat comprised of hundreds (or 

thousands) of such individual fibers deposited on top of one another sequentially. Spacer particles 
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of given diameters are released in the simulation domain from random locations throughout the 

fiber deposition process as needed. A major attribute of our mat simulation algorithm is that it 

allows for the freshly deposited fibers to bend and conform (depending on their stiffness) to the 

curvature of their underlying solid objects (i.e., previously deposited fibers or spheres). Solid–

solid interpenetration is avoided by checking the distance between the spheres at each time step. 

To simplify an otherwise lengthy calculation, we have assumed the fibers and spacer particles to 

become un-deformable and unmovable as soon as they are deposited. The basis weight of the fibers 

and spacer particles are calculated after each deposition to check if the desired basis weights are 

achieved. Thickness of the virtual mats is estimated by averaging the heights of the top surface of 

the fibers and particles near the top of the structure. The length of the fibers is calculated by 

summing up the distance between consecutive spheres along the length of the fiber. The total 

number of deposited fiber and volume of deposited fiber are obtained in the mentioned domain.  

 

Figure 4.5a shows an example of our trajectory predictions obtained for a PU polymer jet in an 

electrostatic field with a voltage of V0 = 12 kV across an NCD of h = 10 cm. A fiber deposition 

diameter of 1.2 µm and a deposition velocity of 30 m/s were obtained from this simulation and 

used in our mat-generation model to produce virtual electrospun PS–PU composite mats with 

different properties. Figure 4.5b shows a 1 × 1𝑚𝑚 example of our PS–PU electrospun media 

comprised of fiber with a diameter of 1.2 µm, spacer particles with a diameter of 10 µm, and a 

total basis weight of 𝑊𝑡 = 5𝑔 𝑚2⁄  (with the basis weight of PU fibers 𝑊𝑓 = 4𝑔 𝑚2⁄  and the basis 

weight of PS beads 𝑊𝑠 = 1𝑔 𝑚2⁄ ). The dimensionless thickness (defined as thickness divided by 

total basis weight, multiplied by the average of the material densities of PS and PU) and solid 

volume fraction (SVF) of the mat shown in Figure 4.5b are 23.1 and 8.1%, respectively.  
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Figure 4.5: a) An example of PU jet attenuation simulation (from a solution with a concentration 

of 5%) is given in (a) for a DC voltage of 12 kV, a NCD of 10 cm, and a solution flow rate of 1 

ml/h. An example of our virtual PU–PS spacer-embedded fibrous structures is shown in (b) with 

fibers having a diameter of 1 μm and a basis weight of 4 g/m2 and beads having a diameter of 

10 μm and a basis weight of 1 g/m2. Figures (c), (d), and (e) show magnified views of the upper 

right corner of the mat shown in (b) during fiber deposition at different basis weights of 2, 3.5 and 

5 g/m2. 

b)

1mm

𝑤𝑡 = 5 g/m
2

0

6

-6

-6

0

6

5

10

0

z 
(c

m
)

a)

𝑤𝑡 = 2 g/m
2

c)

𝑤𝑡 = 3.5 g/m
2

d)

𝑤𝑡 = 5 g/m
2

e)



www.manaraa.com66 
 

Figures 4.5c–4.5e show an arbitrary corner of the mat shown in Figure 4.5b at a higher 

magnification. For illustration purposes, these figures are produced at different basis weights to 

show how, for instance one, a spacer particle (shown in yellow) is being buried under the fibers as 

more fibers are added. 

 

4.4 Modeling Filtration Performance of Spacer-Embedded Fibrous Media 

To present an example for the applications that can benefit from the structure simulation method 

developed in this work, we study how embedding spacer particles can impact the filtration 

performance of an arbitrary electrospun filter media, for the first time. For the sake of simplicity, 

we only consider the initial performance of the filter i.e., the time-dependent effects of dust 

deposition on filter pressure drop and collection efficiency are not considered (see [168] for more 

information about modeling dust-loaded fibrous filters). 

 

With the spacer particles having a much smaller total surface area (and number density) than the 

fibers (see Figure 4.5), it is reasonable to assume (and also confirmed in our preliminary 

calculations) that they themselves do not make any significant contribution to the collection 

efficiency or pressure drop of the filter but merely increase the porosity of the fibrous media (hence 

the name “spacer” not “collector”). Particle filtration efficiency of the filter (spacer-embedded 

fibrous media) can be estimated using the following expression from literature [169,170]: 

𝐸𝑓 = 1 − 𝑃𝑓 = 1 − 𝑒𝑥𝑝 [
−4𝛼𝑓𝐸∑,

𝑓𝑡

𝜋(1−𝛼𝑓)𝑑𝑓
]         (4.1) 
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where 𝛼𝑓 is the solid volume fraction of filter (defined as the ratio of the volume of the fibers to 

that of the filter given here as 1𝑚𝑚 × 1𝑚𝑚 × 𝑡). Diameter of the fibers is denoted by 𝑑𝑓, and 

filter thickness is denoted by 𝑡.  𝐸∑,
𝑓 represents the total single collector efficiency for the fibrous 

media, and it represents particle collection due to diffusion, interception, and inertial impaction, 

according to the expression given below [104], 

𝐸∑
𝑓 = 1 − (1 − 𝐸𝐷

𝑓)(1 − 𝐸𝑅
𝑓)(1 − 𝐸𝑙

𝑓)       (4.2) 

 

where 𝐸𝐷
𝑓, 𝐸𝑅

𝑓 and 𝐸𝑙
𝑓 are the single collector efficiencies due to diffusion, interception, and 

inertial impaction, respectively. There are a variety of expressions for particle collection due to 

different mechanisms. In this study, we use the equation of Stechkina [171] for single fiber 

efficiency due to Brownian diffusion, i.e.,    

𝐸𝐷
𝑓 = 2.9𝐾𝑢−1 3⁄ 𝑃𝑒𝑓

−2 3⁄ + 0.62𝑃𝑒𝑓
−1      (4.3) 

where 𝑃𝑒𝑓 = (𝑈0𝑑𝑓) 𝐷⁄  is the Peclet number and 𝐾𝑢 = −𝑙𝑛 (𝛼𝑓) 2⁄ − 3 4⁄ + 𝛼𝑓 − 𝛼𝑓
2 4⁄  is the 

Kuwabara hydrodynamic factor. Single fiber efficiency due to interception and inertial impaction 

is calculated here using the expression proposed by Lee and Liu [172] and that in ref. [173] given 

in Eqs. 4.4 and 4.5, respectively. 

𝐸𝑅
𝑓 = 0.6

1−𝛼𝑓

𝐾𝑢

𝑅𝑓
2

(1+𝑅𝑓)
         (4.4) 

𝐸𝑙
𝑓 =

𝑆𝑡𝑘𝑓
3

𝑆𝑡𝑘𝑓
3+0.77𝑆𝑡𝑘𝑓

2+0.22
        (4.5) 

where 𝑅𝑓 = 𝑑𝑝 𝑑𝑓⁄  is the particle-to-fiber diameter ratio, and 𝑆𝑡𝑘𝑓 =
𝜌𝑝𝑑𝑝

2𝐶𝑐𝑈0

18𝜇𝑑𝑓
 is the Stokes 

number defined using fiber diameter. The particle collection efficiency of a filter comprised on 

fibers and spacers can now be estimated using Eqs. 4.1–5 (see the next section).  
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Pressure drop of a spacer-embedded fibrous media is predominantly due to friction between the 

flow and the fibers. There are a variety of analytical or empirical expressions in the literature for 

the permeability of a fibrous media (see e.g., [84]). For the current study, we arbitrarily chose the 

following equation for our calculations 

 𝑘𝑓(𝛼𝑓) =
𝑑𝑓
2

16𝛼𝑓
[− (

1

2
) 𝑙𝑛(𝛼𝑓) − 0.75 + (𝛼𝑓) − (𝛼𝑓)

2
4⁄ ]    (4.6) 

where  𝑘𝑓 represents the permeability of the fibrous media [79]. The filter pressure drop can be 

calculated as, 

∆𝑃 = 𝑈0
𝜇

𝑘𝑓
𝑡          (4.7) 

 

4.5 Results and Discussion 

In this section, we first investigate how addition of spacers with different diameters or number 

densities (basis weights) can influence the SVF and thickness of a fibrous structures. We then 

investigate how these effects translate to different filter pressure drop and aerosol collection 

efficiency values.  

 

Figure 4.6a shows SVF and dimensionless thickness for spacer-embedded media with a constant 

total basis weight of 𝑊𝑡 = 8𝑔 𝑚2⁄  having different spacer diameters and basis weights but a 

constant fiber diameter of 𝑑𝑓 = 3 μ𝑚. It can be seen that thickness of the media increases (and so 

its SVF decreases) with increasing the basis weight or diameter of the spacers (when the total basis 
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is kept constant). This is an interesting observation as it is in contrast to the case of bimodal fibrous 

media comprised of coarse and fine rigid (un-deformable) fibers, where increasing the basis weight 

of the coarse fibers (or increasing their diameter) decreases the thickness (and so increases the 

SVF) of the media [95]. This behavior is in fact similar to that of bimodal fibrous media made up 

of soft fibers [95]. This observation is also consistent with the experimental data reported in the 

literature regarding the effects of bead-to-fiber diameter ratio on SVF of materials produced by 

electrospinning fibers and electrospraying beads simultaneously [79] (although ref. [79] does not 

report much details about the individual basis weights for the beads or fibers). This Figure 4.6a 

also includes dimensionless thickness and SVF for a filter with no spacer particles (fibrous mat). 

It can be seen that a purely fibrous media is much thinner and much denser than its particle-

embedded counterparts with the same total basis weight.  
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Figure 4.6: Dimensionless thickness and SVF are given vs. spacer diameter in (a) for composite 

filters with a total basis weight of 8 g/m2 and a fiber diameter of 3 μm but varying spacer basis 

weights. Pressure drop values expected from the filters shown in (a) are given in (b) at an airflow 

velocity of 10 cm/s. Panels (c) and (d) show examples of the simulated PU–PS composite filters 

with different spacer diameters of 20 μm and 40 μm, respectively. The fiber diameter, total basis 

weight and spacers basis weight are 3 μm, 8 g/m2, and 1 g/m2, respectively, for both cases. 

Dimensionless thickness and SVF were calculated to be 19.4 and 5.1% for the case shown in (c) 

and 21.9 and 4.5% for that in (d), respectively. 

 

Figure 4.6b shows the pressure drop values expected from the media presented in Figure 4.6a for 

a face velocity of 0.1 m/s. As can be seen in this figure, a lower pressure drop can be expected 

from media with a greater spacer basis weight. Likewise, increasing spacer’s diameter, for a given 

spacer basis weight, tend to decrease media’s pressure drop. The trends of variation of pressure 
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drop with spacer diameter and basis weight seem to follow those of SVF in Figure 4.6a. Also, note 

in this figure that the filter with no spacer particles has the highest pressure drop (as it is less 

porous). Figures 4.6c and 4.6d show examples of the above virtual media comprised of PS spacers 

with diameters of 20 and 40 µm, respectively, having a PS basis weight of 𝑊𝑠 = 1𝑔 𝑚2⁄ . 

 

Figure 4.7a shows the collection efficiency of the above media when challenged with aerosol 

particles with diameters ranging from 10 nm to 5 µm. This figure compares the collection 

efficiencies of composite media with identical spacer basis weights but two different spacer 

diameters of 20 and 40 µm. Increasing the diameter of spacer particles, at a fixed spacer basis 

weight, seem to have a relatively weak effect on the collection efficiency of the resulting composite 

filter (consistent with how it affects SVF).   

 

As pressure drop of a filter often increases simultaneously with its collection efficiency (but at 

different rates), it may be difficult to compare filters with different pressure drop and efficiency 

values. Figure of merit (FOM), also referred to as quality factor Q, is often used to gauge the rate 

of change of pressure drop (∆𝑃) with that of collection efficiency (presented in terms of 

penetration, i.e., 1 − 𝐸), 

𝑄 =
−𝑙𝑛(1−𝐸)

∆𝑃
          (4.8) 

 

Figure 4.7b presents FOM for composite filters with a fix spacer diameter of 𝑑𝑠 = 40μ𝑚 but 

different spacer basis weights of 0 𝑔 𝑚2⁄  (fibers only) to 4𝑔 𝑚2⁄  challenged with aerosol particles 

with diameters ranging from 10 nm to 5 µm. It can clearly be seen that adding spacer particles 
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helps to increase the figure of merit of a filter (lowers the pressure more than it lowers the 

collection efficiency).   

 

 

Figure 4.7: Collection efficiency predictions against aerosol particles with diameters ranging from 

10 nm to 5 µm is given in (a) for media with identical spacer basis weights but two different spacer 

diameters. FOM for composite filters with a fix spacer diameter but different spacer basis weights 

is given in (b) vs. aerosol particle diameter.  

 

Figures 4.8a and 4.8b consider virtual composite media having a fiber diameter of  𝑑𝑓 = 5 𝜇𝑚 but 

with spacer particles of different diameters and basis weights. The total basis weight for the media 

shown in Figure 4.8a is 16𝑔 𝑚2⁄  and for those in Figure 4.8b is 8𝑔 𝑚2⁄ . Same as the case in 

Figure 4.7, increasing spacer diameter or basis weight in media with a fixed total basis weight and 

a fixed fiber diameter, tends to increase the thickness (and decrease the SVF) of the resulting 

media. Comparing the SVF and dimensionless thickness values reported for media with different 

total basis weights, it can be seen that the above effects are almost independent of the total basis 

weight of the media.  
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Figure 4.8: Dimensionless thickness and SVF are presented vs. spacer diameter for composite 

filters with different total basis weights of 16 g/m2 and 8 g/m2 in (a) and (b), respectively. Fiber 

diameter (5 μm) and spacer basis weight fractions (𝑊𝑠/𝑊𝑡) are the same in both figures. 

 

Figure 4.9a presents collection efficiency predictions for the above composite filters (spacer basis 

weight in this figure is one fourth of the total basis weight for each case) against selected aerosol 

particle diameters of 20 nm (about the lowest end), 200 nm (about the size of most penetrating 

particles), and 1,500 nm (about the highest end) versus spacer diameter. It can again be seen that 

increasing the space diameter (or decreasing the overall basis weight of the filter) decreases the 

efficiency of the composite media. Effects of spacer diameter and basis weight on pressure drop 

are shown in Figure 4.9b for media with different total basis weights. Similar to the case shown in 

Figure 4.6b, pressure drop decreases rapidly with increasing the basis weight of the spacer particles 

but slowly when increasing their diameters (for a constant total basis weight).  

 

15 20 25 30 35 40 45

5

10

15

20

25

4

5

6

7

8

9

D
im

en
si

o
n

le
ss

 
th

ic
k

ne
ss

S
V

F

ds (μm)

df = 5 μm, Wt = 16 g/m2

Ws = 8 g/m2

Ws = 4 g/m2

Ws = 2 g/m2

15 20 25 30 35 40 45

5

10

15

20

25

4

5

6

7

8

9

D
im

en
si

o
n
le

ss
 

th
ic

k
ne

ss

S
V

F

ds (μm)

df = 5 μm, Wt = 8 g/m2

Ws = 4 g/m2

Ws = 2 g/m2

Ws = 1 g/m2

(a) (b)



www.manaraa.com74 
 

 

Figure 4.9: The effects of spacer diameter on collection efficiency against selected aerosol particle 

diameters for 2 different total basis weights are given in (c). Pressure drop values expected from 

the filters shown in (a) and (b) are given in (d) at an airflow velocity of 10 cm/s. 

 

4.6 Conclusions 

Using the electrospinning process as an example, we demonstrate that one can produce bead-

embedded fibrous structures for applications like aerosol filtration, among many other 

applications. Using an in-house mass-spring damper model that can incorporate the bending 

rigidity of the fibers (and avoid solid–solid interpenetration), we simulated the 3-D microstructure 

of such composite media, for the first time. Using available expression in the filtration literature, 

we predicted the collection efficiency and pressure drop of our virtual spacer-embedded fibrous 

media. We observed that adding spacer particles (beads in the context of electrospinning, for 

instance) improves the performance of the resulting filter.  
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Chapter 5. Modeling Dust Growth on a Flat Surface: Effects of Particle Shape on Porosity 

and Thickness 

 

5.1 Introduction 

Packing dust and particles are not only a fundamental physical and mathematical problem, but also 

widely involved in industry like filtration and granular membrane. Packing problems have been 

extensively studied to characterize the structure of material and the properties of particle packing, 

and arisen in numerous applications [175,187]. One of the concerns in dust packing is predicting 

of packing density that is a weak point in filtration industries because of increasing pressure drop. 

Packed dust is included different shape of particle that could have symmetric or complicated shape 

that have wide range of shapes in 2 different categories: spherical and non-spherical particle. 

 

Numerous studies have been presented on spherical particles packing and characterizing sphere 

packing with different conditions, such as the binary [177-179] and polydisperse packing 

[179,180] with a large disparity of size distributions. The most of real particles in industrial 

applications are not spherical and it raised the idea of simulating the non-spherical particles. The 

packing investigations of non-spherical particles are more complicated in comparison with 

spherical objects due to the additional boundaries and complicated surfaces. Some limited works 

studied limited simple and basic objects, such as ellipsoid [181], spherocylinder [182,183], 

cylinder [184] and Platonic solids [185]. To characterize the more complicated objects packing, 

image processing techniques have been developed to predict 3-D packing from computed 
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tomography (CT) images of realistic particles [107,108]. Numerical simulation on the random 

packing of non-spherical particles with different sizes or shapes are even rare because of CPU time 

and computer technology limitations. A number of geometrical and analytical models has been 

applied in recent studies of limited range of shape and particle's packing [186].  Moreover, different 

shapes need different models, and no general applicable analytic model has been found. The 

proposed sphere assembly model is another kind of approximation numerical model for the non-

spherical particle packing [186,187]. This model could detect the contacts between the particles 

more efficient in comparison with previous works but it does not have capability to consider the 

deformation of non-spherical particles and external body force effects on the packing density. 

 

An accurate method which is able to build wide range of non-spherical particles with good 

approximation of the real particles is simulation with mass-spring-damper model [95]. These 

approaches have the ability to simulate particles of any shape. Thus, the collision detection in this 

model is converted the contacts between non-spherical particles to the penetrations between 

spheres (simple objects) and saves much time with higher efficiency on simulation of complex 

objects. Furthermore, the model makes it possible to investigate the external body force effects 

and the deformation of deformable non-spherical particles among rigid solid different shape of 

particles. The present study is motivated by a novel method based on mass-spring-damper (MSD) 

of fibrous structure simulation [15,16,55,95,96]. In previous works, MSD model applied to 

characterize electrospun mat with studying the viscoelasticity, electrospinning parameters and 

spherical spacer effects on fibrous structure properties (like thickness, porosity and filtration 

efficiency). Here, the computational in-house C++ computer program with mentioned MSD model 

is developed to simulate the 3-D structure of random dust formation for different shape, size and 
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basis weight of non-spherical particles. Based on the simulation results for different shapes and 

aspect ratio conditions, we characterize the geometric packing a wide range of non-spherical 

particles as a function of the shape and size of particles with different aspect ratio. The purpose of 

this work is to investigate the behavior of particle shape and size effects of the non-spherical 

particles on the dust formation, further to simulate the dust formation for the first time.  

 

This chapter is organized as follows: we first explain how different non-spherical particles 

mathematically connected in this model (Section 5.2). Next step, the mass-spring-damoer model 

and the force balance equation in this model explained. The collision detection algorithm of MSD 

model explained in detail. Simulation of dust formation presented in Section 5.3. Then, our results 

and discussion for different parameters are given in Section 5.4 followed by the conclusions in 

Section 5.5. 

 

5.2 Non-Spherical Particle Geometry 

The mass-spring-damper (MSD) model to simulate the fibrous structure was firstly developed by 

Venkateshan et al. [95] to simulate the random deposition of fibers. The algorithm was improved 

to simulate the random deposition of straight and curly fibers by introducing spherical particles as 

a spacers [15,16,55]. Here, The MSD model is used in the simulations to model the non-spherical 

particle and detect the collision between particles. The MSD model of a non-spherical is 

constructed by a number of masses with center-to-center distances of mass’s diameter (The 

distances between the neighbor masses) that connected with parallel spring and dampers with a 

direction of X-Y slope (Sx-y) and Z-direction (Sz) along a straight line. The diameters of all spheres 
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are arbitrary and to study the effect of size varied from 3 to 15 μm. Aspect ratio shows the ratio 

between the number of masses along the edge length of objects over by the diameter of one mass. 

The volume and surface area can be obtained easily from geometry calculation for different 

simulated non-spherical particles. The model is an excellent approximation to detect the 

connection and obtain the volume and mass weight of each objects. As an important parameter to 

describe differences of the particle shape, volume of each object is a function of dimensions and 

number of point masses and their diameter. The total volume of deposited non-spherical particle 

given by 

𝑉𝑝 = 𝑁𝑓𝜋𝑑𝑝
2(𝑛𝑑𝑝)         (5.1) 

where 𝑁𝑝 is the number of deposited particles, 𝑑𝑝 diameter of each point mass, and 𝑛 is the number 

of point masses for different shapes. Because of the shape of brick, the total volume of deposited 

brick object given by 

𝑉𝑏 = 𝑁𝑝 AR 𝑑𝑝 (4 𝑑𝑝
2)        (5.2) 

 where AR is the aspect ratio of brick. For the simulated objects in this work, number of masses 

for different shape of particles varies from one to 19 (aspect ratio varied from 2.0 to 4.0). We 

followed different steps based on the shape of particles that explain in below.   

 

5.2.1 Spherocylinder Shape 

The spherocylinder particles are constructed by placing at least two point masses next to each other 

(for aspect ratio of two). Second one placed next to the first random positioned mass with center-

to-center distance of diameter of masses. The straight line with the X-Y direction and Z-direction 
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slope is chosen randomly in the range of -1 to 1 to obtain the in-plane and Z position of neighbor 

mass. By adding another mass next to it, the aspect ratio of spherocylinder object could be 

increased. All the connections (straight lines) have a same slope. Figure 5.1 also shows examples 

of spherocylinder shape represented with aspect ratio of 4 (four point masses that are connected 

with straight line in an arbitrary direction). The surface of each mass point is obtained by knowing 

the center point 𝑝𝑖(𝑥, 𝑦, 𝑧) and the diameter of each point 𝑑𝑝. The MSD model and the connection 

of springs and dampers are presented for more complex shape (brick). 

  

Figure 5.1: An example of spherocylinder particles is given for an aspect ratio of 4. Figure shows 

magnified views of top view and isometric view. 

 

5.2.2 Brick Shape 

The proposed mass-spring-damper-based (MSD) model provides a versatile description of 

particles with a broad range of shapes. So, it is also capable to model deformable object (which is 

not a focus of this study) with different aspect ratio (edge length divided by mass diameter). The 

capability to simulate solid brick attached the attention to this model. Figure 5.2.a shows the MSD 

top view

isometric view



www.manaraa.com80 
 

assembly models of a brick with an aspect ratio of 2.0 included springs and dampers that are 

connected in parallel order. 

 

As presented in Figure 5.2.a, the number of point masses for the aspect ratio of 2 is 9. The position 

of first mass is chosen randomly in the computational domain and considered as a corner of cube. 

The X-Y direction and Z-direction slope are randomly chosen to find the neighbor point mass, 

next to the first point. 𝑥2, 𝑦2, 𝑧2 are the coordinates of the second point at the local coordinate 

system, which is connected to the first point with straight (known X-Y direction (𝑆𝑥−𝑦) and Z-

direction slope (𝑆𝑧)) parallel spring and damper with a distance of point mass’s diameter. Third 

point coordinate is obtained in a same way with the X-Y direction perpendicular to the 𝑝1𝑝2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ 

(−1 𝑆𝑥−𝑦⁄ ) with the same center-to-center distance and Z-direction slope. The 𝑝4 coordinate is 

obtained from the known geometric parameters (−𝑆𝑥−𝑦, 𝑆𝑧 and 𝑑𝑝). The below face of cube is 

modeled from initial random parameters. The cross product of 𝑝1𝑝2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗  and 𝑝1𝑝4⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ helps to find the top 

face of cube. With the obtained vector, the location of 4 other point masses on the top face corner 

of cube is calculated with the known points on the below face and their cross product vector. To 

have the sustainable objects with balanced force, the last point placed at the center of cube. The 

other size of bricks with different aspect ratio could be modeled with adding more plane (4 points 

each plane) and increased the size of brick in the direction of cross product vector.  Example of 

simulated brick with aspect ratio 2 (cube) is shown in Figure 5.2.b as an example. 
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Figure 5.2: a) The mass-spring-damper model representation of a brick with aspect ratio of 2 

(cube), b) an example of cube. Figure shows magnified views of top view and isometric view, c) 

free body diagram of a point-mass, P1 (the corner of cube), d) free body diagram of a point-mass, 

P9 (the center of cube). 

 

5.2.2.1 Force Balance Equations for Cube 

MSD modeling approach is used here to keep all the non-spherical shapes sustainable. In the 

current study, we have assumed the particles to be made up of number of masses connected to one 

another by springs and dampers in a straight line (see Figure 5.2.a). Our approach to simulate a 

non-spherical shape here is to treat the objects as solid dust. The most common model for solid 

phase material (the case here) is the Kelvin-Voigt viscoelastic model, where springs and dampers 
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are connected in parallel [15,16,55,95]. For the high value of spring and damping coefficient the 

bending and deformation neglected. This model allows an efficient representation of a solid objects 

through solving the balance of mechanical forces acting on each mass pi. These forces are due to 

the springs and dampers (neglecting gravitational forces), as shown in the Figure 5.2.c and Figure 

5.2.d. The external body forces (packing and hydraulic) are included in our simulations and applied 

to the all masses. The position and velocity of each mass after several time can be obtained by 

solving Newton’s second law. For a cube with 9 mass, this leads to a coupled system of 2nd order 

ordinary differential equations (ODEs). From a free body diagram showing the force acting on 

mass on the corner by the masses to which it is connected, one obtains (Figure 5.2.c), 

𝑓1
∑
= 𝑓1,2

𝑠 + 𝑓1,4
𝑠 + 𝑓1,5

𝑠 + 𝑓1,9
𝑠 + 𝑓1,2

𝑑 + 𝑓1,4
𝑑 + 𝑓1,5

𝑑 + 𝑓1,9
𝑑 + 𝑓1

𝑃    (5.3) 

In this equation, 𝑓𝑠  and 𝑓𝑑 represent spring and damper forces, respectively, i.e. The last term on 

the right-hand side of Equation 5.3 is the packing force applied on each mass, and it can be 

described in packing dust formation. All forces acting on the other points (the corner of cube) 

could be calculated in a same way. To balance the forces, the center point of cube is connected to 

all other masses (Figure 5.2.a), the spring and damping force for that one could be obtained from 

Equation 5.4 (See Figure 5.2.d). 

𝑓9
∑

= 𝑓9,1
𝑠 + 𝑓9,2

𝑠 + 𝑓9,3
𝑠 + 𝑓9,4

𝑠 + 𝑓9,5
𝑠 + 𝑓9,6

𝑠 + 𝑓9,7
𝑠 + 𝑓9,8

𝑠 + 𝑓9,1
𝑑 + 𝑓9,2

𝑑 + 𝑓9,3
𝑑 + 𝑓9,4

𝑑 + 𝑓9,5
𝑑 +

𝑓9,6
𝑑 + 𝑓9,7

𝑑 + 𝑓9,8
𝑑 + 𝑓9

𝑃          (5.4) 

The system of ODEs in Equation 5.5 is solved using the Runge–Kutta 4th order method with a 

time step of 0.003 μs. 

𝑑

𝑑𝑡
[
𝑣𝑖
𝑝𝑖
] = [𝑓𝑖

∑
/𝑚𝑖
𝑣𝑖

]           (5.5) 
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5.2.3 Dandelion Shape 

In general, 2 different type of dandelion with different aspect ratio have been simulated here that 

they have 4 variables in total (number of legs, length of legs, the size and direction of each legs) 

for modeling an arbitrary dandelion object. Some preprocessing should be done first to obtain a 

position of masses for dandelion particles with these variables. As be explained in previous section, 

the first point can be placed with a random 𝑥1, 𝑦1, 𝑧1 coordinate in computational domain. The 

other points, based on the length of dandelion legs would be placed same as making spherocylinder 

objects (next to the first points with a known parameter’s directions and diameter). It’s necessary 

to mention this point that the direction of other legs would be obtained from the first leg direction. 

The second leg is placed perpendicular to the first leg (The X-Y direction slope of second one is 

perpendicular −1 𝑆𝑥𝑦⁄  and the Z-direction slope is same 𝑆𝑧). The point’s coordinates on the second 

legs obtained same as the first one. To simulate the dandelion with 3 legs, the X-Y direction and 

Z-direction slope of third leg obtained from cross product of the first and second one’s directions. 

The coordinate of points on 3rd one would be obtained as be explained earlier with the known 

directions and center-to-center distance.  Figure 5.3, shows example of the simulated dandelion 

with 3 legs and the aspect ratio of 3 (length of legs from the center to the end divided by the mass 

diameter) with the mass diameter of 6 μm.  
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Figure 5.3: a) an example of dandelion is given for an aspect ratio of 3. Figure shows magnified 

views of top view and isometric view, b) The mass-spring-damper model representation of a 

dandelion with aspect ratio of 2, c) free body diagram of a point-mass, P2. 

 

From a free body diagram showing the force acting on mass P2 by the masses to which it is 

connected, one obtains (Figure 5.3.c), 

𝑓1
∑
= 𝑓2,1

𝑠 + 𝑓2,3
𝑠 + 𝑓2,4

𝑠 + 𝑓2,5
𝑠 + 𝑓2,6

𝑠 + 𝑓2,7
𝑠 + 𝑓2,1

𝑑 + 𝑓2,3
𝑑 + 𝑓2,4

𝑑 + 𝑓2,5
𝑑 + 𝑓2,6

𝑑 + 𝑓2,7
𝑑 + 𝑓1

𝑃 (5.6) 

All forces acting on the other points could be calculated in a simple way that presented in previous 

parts. 

5.3 Numerical Simulations 

The mass-spring-damper method has been implemented in an in-house computer C++ program to 

simulate different shape of non-spherical particles. In this section, dust packing simulation are 
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presented to demonstrate the shape of the proposed particles in conjunction with the collision 

detection algorithm in solving problems relevant to dust formation. First the algorithm for dust 

packing explained, then the collision detection of our simulation presented in detail. 

 

5.3.1 Dust Packing of Non-Spherical Particles 

Random packing of dust formation has many useful engineering and industrial applications. A 

packing of dust growth can be simulated for different shapes, for example, spherical, brick and 

dandelion. A simulation of dust formation with different shape of particles through free falling 

without gravity (because of dust size, the mass is negligible) on a substrate is performed using the 

proposed method in previous sections. In the simulation, number of particles with random 

orientations are introduced to the media sequentially one-by-one from the highest point of 

deposited dust, where the x-y of particle shape are randomly selected in the range of as 𝑥 ∈

[−200,200], 𝑦 ∈ [−200,200] for the mass diameter of 3 𝜇𝑚 (based on the size of particles the 

size of collector varies). The material properties of particles are set as follows: the material density 

is set to 1000𝑔 𝑚3⁄ , the normalized spring and damping coefficient are set to 3 × 1020𝑁 𝑚⁄ . 𝑘𝑔 

and 3 × 1012𝑁. 𝑠 𝑚⁄ . 𝑘𝑔, respectively, and the deposition velocity of particles is set to 10𝑚 𝑠⁄  

[15,16]. During the simulation, a time step of 0.003 𝜇𝑠 are considered. Note that the 

aforementioned substrate size do matter for the large size of non-spherical particles and dust 

formation, which deserve a calibration and one should increase the substrate size to reduce the 

sample size errors on solid volume fraction values. However, the focus is placed on the removing 

the size errors by increasing computation domain size and also the proposed approach to simulate 

the wide range of non-spherical shapes with different aspect ratio and collision detection 

algorithm. Thus, the chosen values of sample size have been based on number of simulations. 
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Figure 5.4 shows the simulation after introducing 6000 (10 𝑔 𝑚2⁄ ), 12000 (20 𝑔 𝑚2⁄ ), and 24000 

cube with the aspect ratio of 2 and diameter of 6 𝜇𝑚 to reach basis weight of 40 𝑔 𝑚2⁄ . The solid 

volume fraction and mean thickness are 13.55% and 292.197 𝜇𝑚, respectively, for the final basis 

weight of 40𝑔 𝑚2⁄  and the mass diameter of 6 𝜇𝑚. The magnified image in Figure 5.4c shows 

the cube sitting on top of each other. Figure 5.5 also shows the simulation after introducing 4500 

(10 𝑔 𝑚2⁄ ), 9000 (20 𝑔 𝑚2⁄ ), and 18000 dandelion particles with the aspect ratio of 4 and 

diameter of 6 𝜇𝑚 to reach basis weight of 40 𝑔 𝑚2⁄ . The solid volume fraction and mean thickness 

are 6.11% and 651.7 𝜇𝑚, respectively, for the final basis weight of 40𝑔 𝑚2⁄  and the mass 

diameter of 6 𝜇𝑚. As you seen in these two figures, the packed structure of cube is denser in 

comparison with dandelion one (dandelion packed structure is more porous). During the 

introducing the particles to the simulation media with initial deposition velocity and external body 

force are constant. The variation of the number of masses for different shapes of particles is 

presented in result and discussion section, where the number of masses varied from two 

(spherocylinder) to 19 (brick with aspect ratio of 4). 
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Figure 5.4: An example of our virtual packed cube structures is shown with cube having a 

diameter mass of 6 μm and a basis weight of 10 g/m2 in (a). Figures (b), and (c), show 3-D 

structure of packed dust (left) and the top view (right) during cube deposition at different basis 

weights of 20, and 40 g/m2, respectively. Figure (c) is shown the final structure along with a 

magnified image showing the cube interaction. 
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Figure 5.5: An example of our virtual packed dandelion structures is shown with dandelion having a 

diameter mass of 6 μm and a basis weight of 10 g/m2 in (a). Figures (b), and (c), show 3-D structure of 

packed dust (left) and the top view (right) during dandelion deposition at different basis weights of 20, and 

40 g/m2, respectively.  
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All numerical parameters keep the same values for different shapes simulation. First, non-spherical 

objects with different size are generated and starts falling from random position on top of the 

substrate with adequate space till touching the next solid surface. Unreasonable intersections and 

penetration between particles in the particle packing are the challenging task that can directly affect 

the solid volume fraction of simulated structure. This issue would be handled by collision detection 

algorithm. The particles introduced to the media one-by-one to place on top of each other to formed 

dust.  

 

5.3.2 Collision Detection (Particle-Particle Contact) 

The contacts detection used in our simulation to prevent the penetration of non-spherical particles 

to other ones with detection the distance of point masses, which is used to simulate the non-

spherical particles of arbitrary shape. As be discussed earlier in the previous section, we produce 

non-spherical particles comprised of number of masses that can move in Z-direction till touch the 

next solid surface (generally deposited dust or substrate). Here, for general contact detection (also 

called collision detection) of non-spherical particles, two sequential steps are done simultaneously: 

depositing the dust formation (falling down) and detecting its distance with deposited particles or 

solid surfaces (substrate). For the first steps as presented in previous section the point mass’s 

positions of falling particle updated in every time steps as presented in force balance section. For 

the second steps of collision detection, this study adopts the position of 2 particles when they touch 

each other and freeze both as detailed below.  

In each time steps the introduced particle moves down till the center-to-center distance of coming 

particle and deposited particle is equal to the point mass’s diameter. Next, the coming particle 
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stops and prevents the collisions with the deposited particles. After freezing the coming particle, 

particle velocity is reset to 0 and the position of this particle considered as a deposited particle to 

avoid moving due to possible others penetrations and collisions. The algorithm checks whether or 

not a collision has occurred between the point masses of a coming particles and those of the already 

deposited particles (as well as among the point masses of the same objects). Particles 

interpenetration is avoided by monitoring the distance between the masses at each time step to 

ensure that no masses can come closer to one another by a distance less than a mass diameter. If 

two masses are interpenetrating, the distance between these beads at that time step is corrected 

(moved apart in the direction of the vector connecting them) to become equal to the mass diameter. 

Once the deposition and collision detection processes are completed, the dusts are assumed to be 

rigid. Therefore, the masses in the formed dust do not move every time a new object is deposited. 

This allows our collision detection algorithm to search for a collision between the masses of a new 

particles and those of the deposited particles. The number of masses affects the computing time of 

the algorithm because of increasing the number of contacts. Obviously, the simulations slow down 

as additional particles enter the simulation domain. To summarize, in our dust growth simulations, 

we allow the non-spherical particles to fall down horizontally until they reach next surface, and 

we then stop them from moving. 

 

5.4 Results and Discussion 

The 3-D structure of dust packing including non-spherical particles are not easy to simulate for the 

industrial researches. These packed particles have been discussed based on defect in filtration 

industries and are critical to characterize the formed dust. In fact, we proposed an accurate model 

to simulate the packing particles that have a good visual agreement with the formed dust in pleated 
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filters. The non-spherical particles used in our simulation covered a wider range of shapes in 

comparison with those of presented in literature [177,185]. In contrast with other works in 

literature, we developed a new approach to model formation and growth of dust-cakes comprised 

of non-overlapping non-spherical particles, for the first time. We start section by first presenting a 

visual comparison between packing different shapes of particle obtained from simulation. We then 

move on to compare simulation results for different parameters. We study the effect of mechanical 

properties of particles (shape and size) on thickness or porosity (SVF) of the packed particle. 

 

In this work, we simulate the random packing of different particles with the aspect ratio varied 

from 2 to 4. The basis weight of deposited particle is equal to number of deposited particle multiple 

by volume of each particle (See Equation 5.1) and density of dust divided by the covered area on 

in-plan computational domain size. 3-D structure of non-spherical particle packs are presented in 

Figures 5.6-5.8. It can be seen that 3-D structure for a larger aspect ratio makes structure more 

porous for same shape with same size. Based on the results given in Figures 5.6-5.8, the changes 

in 3-D structures is significantly for spherocylinder particles in compare with brick one. We 

believe the 3-D structure of different shapes for the aspect ratio of 2 in Figures 5.6-5.8 is more 

uniform and dense than larger aspect ratio. Furthermore, comparing the 3-D structure given in 

Figures 5.6-5.8, one can see that the solid volume fraction is lower for the higher aspect ratio of 

dandelion and the spherocylinder with aspect ratio of 2 has the highest solid volume fraction. 

Figures in the below show the magnified image of isometric view to present the particles 

interaction. Here, we considered point masses with a diameter of 𝑑𝑝  =  9 𝜇𝑚, total basis weight 

of 𝑊𝑏 = 40 𝑔/𝑚
2 and aspect ratio varied from 2 to 4. 
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Figure 5.6: An example of our virtual packed spherocylinder structures is given for 3 different 

aspect ratio (2, 3, and 4). Figures are shown the structure with spherocylinder having a diameter 

mass of 9 μm and a basis weight of 40 g/m2 along with a magnified image showing the 

spherocylinder interaction on below. 

 

 

Figure 5.7: An example of our virtual packed brick structures is given for 3 different aspect ratio 

(2, 3, and 4). Figures are shown the structure with brick having a diameter mass of 9 μm and a 

basis weight of 40 g/m2 along with a magnified image showing the brick interaction on below. 

 

AR = 2 AR = 3 AR = 4

AR = 2 AR = 3 AR = 4
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Figure 5.8: An example of our virtual packed dandelion structures is given for 2 different aspect 

ratio (3, and 4) and 2 different number of legs (2, and 3). Figures are shown the structure with 

dandelion having a diameter mass of 9 μm and a basis weight of 40 g/m2 along with a magnified 

image showing the dandelion interaction on below. 

 

Figures 5.9-5.11 are showing the dimensionless thickness and solid volume fraction, respectively, 

for constant total basis weight  40𝑔 𝑚2⁄  at different mass diameter for different shapes. Figures 

5.9, 5.10, and 5.11 show the results for the dust packing with an external body force of 0.040 N/kg 

for the brick, spherocylinder, and dandelion, respectively. Increasing the mass diameter reveals 

the reduction in SVF (Figures 5.9a-5.11a). The structure for small number of aspect ratio are denser 

and have the higher SVF. Furthermore, comparing the results given in Figures 5.9b-5.11b, one can 

see that the dimensionless thickness is higher for smaller diameter. Figures 5.9b-5.11b also show 

that thickness increases with increasing aspect ratio of particles. Interestingly, he SVF value for 

dandelion with 2 legs and aspect ratio of 4 is close to dandelion with 3 legs and aspect ratio of 3. 

It seems adding more legs have the same effect on mechanical properties like increasing the aspect 

ratio. 

Two legs

AR = 3

Three legs

AR = 3

Three legs

AR = 4
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Figure 5.9: A comparison between SVF and dimensionless thickness of dust packed for brick with 

total basis weigh of 40 g/m2 and external body force of 0.04 N/kg, are shown in (a) and (b), 

respectively. 

 

Figure 5.10: A comparison between SVF and dimensionless thickness of dust packed for 

spherocylinder with total basis weigh of 40 g/m2 and external body force of 0.04 N/kg, are shown 

in (a) and (b), respectively. 
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Figure 5.11: A comparison between SVF and dimensionless thickness of dust packed for 

dandelion with total basis weigh of 40 g/m2 and external body force of 0.04 N/kg, are shown in (a) 

and (b), respectively. 

 

Figure 5.12 shows a computational investigation on the effects of different non-spherical particles 

(keeping the same external body force and aspect ratio) on SVF and dimensionless thickness of 3-

D structure of dust. The basis weight is 40𝑔 𝑚2⁄ . The effect of shape on the SVF is not negligible 

and for the dandelion particles, the SVF is the lower than others. Also, it is shown that the 

dimensionless thickness depends on the shapes and it reduced for the compact symmetric shapes 

and more for dandelion particles. As the three-dimensional structure of different shapes 

(dandelion, cube and Spherocylinder) are simulated and showed in Figures 5.9-5.11. It can be 

expected that 3-D structure for a larger aspect ratio of particle becomes less dense for same 

diameter size. Results show that the structure of dust formation for the particles with a symmetric 

shape (cube) is more uniform than dandelion particles.  
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Figure 5.12: A comparison between SVF and dimensionless thickness of dust packed for three 

different shapes with the same total basis weigh of 40 g/m2 and external body force of 0.04 N/kg, 

are shown in (a) and (b), respectively. 

 

In our simulation, a constant external body force is applied to all the included masses in different 

objects. To study the effect of external forces effects on packing density, the proposed model is 

capable to simulate 3-D structure of packed dust for different packing force in the absence of 

gravity. Then the simulation repeated for other shape of particles. In a pioneering study, the particle 

packing was done to obtain the packing density of different simple shapes [177-187]. Our unique 

approach allowed the investigator to deposit the known shape with known mechanical properties 

of dust to form a pack of dust and to characterize the formed 3-D structure for objects in terms of 

objects shape, size, and aspect ratio in the presence of external forces. 
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5.5 Conclusions 

The study presented here is the first to develop an in-house mass-spring-damper model to simulate 

the non-spherical dust formation in terms of the shape and size. In this method, each object in the 

media is treated as an array of mass with a same diameter, and connected to one another by a series 

of spring and dampers. This helps simulations to model different complex particles and deposit 

them on top of each other without collision that has never been reported previously. The effects of 

size, aspect ratio variation in dust formation are simulated in this work. It was found that porosity 

and thickness of formed dust with constant basis weight increases with increasing the mass 

diameter and aspect ratio. Our simulations also indicated that porosity is higher for the non-

spherical particles with non-uniform shapes with high value of aspect ratio. This new simulation 

approach can be used to study the morphology of a dust-cake and how it impacts, for instance, the 

filtration efficiency of a dust-loaded filter, among many other applications. 
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Chapter 6. Overall Conclusions 

 

A series of investigations on characterizing the 3-D structure of porous media has been presented 

in this thesis. Computational simulations and experiments were developed to find the effects of 

polymer properties on the resulting electrospun mat and deposited fibers. Our work on 

electrospinning process simulation was focused on the electrospinning condition and polymer 

properties effects on deposited fibers. It was found that fiber diameter decreases with decreasing 

polymer concentration (for solution of polystyrene and polycaprolactone). Moreover, fiber 

diameter was found to reduce with increasing needle to collector distance but the deposition 

velocity increased by increasing the applied DC voltage.  

The modeling filament formation in electrospinning process is combined with the structure 

generation algorithm to develop in-house C++ computer program for electrospun mat simulation. 

We focused on calibrating the model in two ways: 1) producing a large set of experimental data 

for polystyrene (PS) mats to be used in developing a representative mat-thickness vs. fiber-

diameter curve fit, and 2) using single-fiber force-deflection experimental data reported in the 

literature for polycaprolactone (PCL) fibers. The model accepts inputs like diameter, basis weight, 

deposition velocity, and bending properties for the fibers as well as diameter and basis weight for 

the spacer particles. The model then predicts morphological parameters like filter porosity and 

filter thickness, as a function of polymer properties and electrospinning conditions. 

Following the established knowledge for the effect of electrospinning condition on the diameter 

of fiber, we computed the effects of electrospinning process on the electrospun thickness 

(corresponding to empirical correlation) reasonable for the electrospun mats comprised of 

polystyrene and olycaprolactone fiber. The results show that parameters as distance from nozzle 



www.manaraa.com99 
 

to collector, fiber diameter, and applied voltage have the moderate influence on the resulting 

electrospun thickness. It was found that solid volume fraction increases with fiber diameter, 

however the effect becomes less when increasing the concentration of polymer. In particular, it 

was shown that applied voltage and needle to collector increases the tendency of electrospun mat 

to reduce its thickness. 

The work presented here is the first to report the effects of spacer particles with different diameters 

or basis weights on the thickness and solid volume fraction of spacer-embedded fibrous media. 

Such morphological information is then used for collection efficiency and pressure drop 

predictions when challenged with aerosol particles in the particle diameter range of 20 nm to 5 µm 

at a face velocity of 10 cm/s. Our results indicate that adding spacer particles to a fibrous filter can 

lower its collection efficiency and pressure drop, but the reduction in the pressure drop will be at 

a higher rate resulting in better filters, i.e., filters with better quality factors. 

This study presents a new approach for mass-spring-damper method (MSD) modeling of non-

spherical particles to form the dust packed. A uniform approach to obtain a position and number 

of mass is employed to represent a realistic 3-D structure of packed non-spherical particle, which 

is shown to be versatile and effective in reproducing a wide range of shape features including 

aspect ratio for real particles in nature. The simulation results prove this point that the symmetric 

particles (like cube and short fibers) with the small aspect ratio and small size have the highest 

solid volume fraction (packing density) in comparison with other non-spherical particle. 

In addition to serving as a characterization tool for porous structure, the computational model 

developed in this work can be used to create accurate representations of the surface morphology 

or the internal geometry of fibrous materials and packed dust used in variety of applications such 

as particle filtration or droplet separation.  
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